cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A240554 Square array of the greatest prime factor of n^k + 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 2, 5, 2, 1, 5, 5, 3, 2, 1, 3, 17, 7, 17, 2, 1, 7, 13, 13, 41, 11, 2, 1, 2, 37, 7, 257, 61, 13, 2, 1, 3, 5, 31, 313, 41, 73, 43, 2, 1, 5, 13, 43, 1297, 521, 241, 547, 257, 2, 1, 11, 41, 19, 1201, 101, 601, 113, 193, 19, 2, 1, 3, 101, 73, 241
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Cf. A003992 (n^k), A014442 (k=2), A081256 (k=3), A096172 (k=4).
Cf. A240548-A240553 (k=5 to 10).

Programs

  • Mathematica
    Table[FactorInteger[(n-k)^k + 1][[-1,1]], {n, 12}, {k, n}]

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Previous Showing 11-12 of 12 results.