cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A096702 Balanced primes of order ten.

Original entry on oeis.org

5503, 6301, 8233, 14489, 14591, 14747, 15907, 17789, 20543, 22067, 22699, 23321, 24593, 25423, 26251, 26347, 28477, 29059, 33161, 41023, 42337, 44021, 48187, 51551, 53279, 55001, 59693, 64661, 78173, 81457, 82561, 84017, 85621, 88301
Offset: 1

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Examples

			5503 is a member because
5503 = (5431 + 5437 + 5441 + 5443 + 5449 + 5471 + 5477 + 5479 + 5483 + 5501 + 5503 + 5507 + 5519 + 5521 + 5527 + 5531 + 5557 + 5563 + 5569 + 5573 + 5581)/21 = 115563/21.
		

Crossrefs

Programs

  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[10000]], 21, 1], #[[11]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[8]] + #[[9]] + #[[10]] + #[[12]] + #[[13]] + #[[14]] + #[[15]] + #[[16]] + #[[17]] + #[[18]] + #[[19]] + #[[20]] + #[[21]])/20 &]][[11]]
    Transpose[Select[Partition[Prime[Range[9000]],21,1],Total[#]/21 == #[[11]]&]][[11]] (* Harvey P. Dale, Mar 09 2014 *)

A096703 Balanced primes of order eleven.

Original entry on oeis.org

173, 353, 631, 827, 3329, 4723, 13693, 17789, 20947, 21059, 21503, 23563, 23599, 27751, 29759, 35419, 36781, 37991, 44939, 52021, 57163, 57269, 57719, 59663, 68713, 70529, 70879, 71399, 75541, 76949, 78301, 79621, 94399, 101929, 104759
Offset: 1

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Examples

			173 is a member because 173 = (109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233)/23 = 3979/23.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..150000],IsPrime);;
    a:=List(Filtered(List([0..12000],k->List([1..23],j->P[j+k])),i->Sum(i)/23=i[12]),m->m[12]); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[10000]], 23, 1], #[[12]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[8]] + #[[9]] + #[[10]] + #[[11]] + #[[13]] + #[[14]] + #[[15]] + #[[16]] + #[[17]] + #[[18]] + #[[19]] + #[[20]] + #[[21]] + #[[22]] + #[[23]])/22 &]][[12]]
    Transpose[Select[Partition[Prime[Range[11000]],23,1],Mean[#] == #[[12]]&]][[12]] (* Harvey P. Dale, Nov 06 2011 *)

A096704 Balanced primes of order twelve.

Original entry on oeis.org

157, 173, 709, 827, 1999, 2689, 6803, 11351, 11489, 12757, 15277, 33071, 37967, 38449, 46751, 47303, 51599, 53113, 56779, 57269, 59107, 62731, 62743, 62791, 63649, 77023, 79357, 81553, 81649, 81953, 85621, 96377, 108139, 113983, 117839
Offset: 1

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Examples

			157 is a term because 157 = (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227)/25 = 3925/25.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..150000],IsPrime);;
    a:=List(Filtered(List([0..12000],k->List([1..25],j->P[j+k])),i->Sum(i)/25=i[13]),m->m[13]); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    Select[Partition[Prime[Range[12000]],25,1],Mean[#]==#[[13]]&][[All,13]] (* Harvey P. Dale, Jun 28 2020 *)

A090403 Balanced primes: Primes which are both the arithmetic mean and median of a sequence of 2k+1 consecutive primes, for some k>0.

Original entry on oeis.org

5, 17, 29, 37, 53, 71, 79, 89, 137, 149, 151, 157, 173, 179, 193, 211, 227, 229, 257, 263, 281, 349, 353, 359, 373, 383, 397, 409, 419, 421, 433, 439, 487, 491, 563, 577, 593, 607, 631, 643, 653, 659, 677, 701, 709, 733, 751, 757, 787, 823, 827, 877, 947, 953
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 07 2003

Keywords

Comments

Union, for all k>0, of (2k+1)-balanced prime numbers, i.e., balanced prime of order k, which are primes p_n such that (2k+1)*p_n = Sum_{i=n-k..n+k} p_i, where p_i is the i-th prime.

Examples

			17 is in the sequence because 17 = (7 + 11 + 13 + 17 + 19 + 23 + 29)/7, (k = 3).
29 is in the sequence because 29 = (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59)/15, (k = 7).
37 is a member because 37 = (7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71)/17; 7 & 71 are eight primes away from 37.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := (For[k=1, !(SameQ[1/(2k+1)Sum[Prime[i], {i, n-k, n+k}], Prime[n]])&& k < n-1, k++ ];k);b[n_] := If[t[n]
    				
  • PARI
    is_A090403(p)={my(s=0,n); isprime(p) & for(k=1,-1+n=primepi(p),(s+=prime(n+k)+prime(n-k)-2*p)||return(1);s>p & return)} \\ M. F. Hasler, Oct 21 2012

Extensions

Definition corrected by Franklin T. Adams-Watters, Apr 13 2006
Edited by M. F. Hasler, Oct 21 2012

A082080 Smallest balanced prime of order n.

Original entry on oeis.org

2, 5, 79, 17, 491, 53, 71, 29, 37, 983, 5503, 173, 157, 353, 5297, 263, 179, 383, 137, 2939, 2083, 751, 353, 5501, 1523, 149, 4561, 1259, 397, 787, 8803, 8803, 607, 227, 3671, 17443, 57097, 3607, 23671, 12539, 1217, 11087, 1087, 21407, 19759, 953
Offset: 0

Views

Author

Labos Elemer, Apr 08 2003

Keywords

Comments

Or, smallest (2n+1)-balanced prime number.
Prime(k) is a balanced prime of order n if it is the average of the 2n+1 primes from prime(k-n) to prime(k+n).

Examples

			a(1) = 5 = (3 + 5 + 7)/3 = 15/3.
a(5) = 53 = (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73)/11 = 583/11.
a(6) = 71 = (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101)/13 = 923/13.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@ Range[2n +1]}, While[ Total[p] != (2n +1) p[[n +1]], p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; p[[n +1]]]; Array[f, 46, 0] (* Robert G. Wilson v, Jun 21 2004 and modified Apr 11 2017 *)
  • PARI
    for(n=0, 50, i=2*n+1;f=0;forprime(p=2, 10^7, s=0;c=i;pr=p-1;t=0;while(c>0, c=c-1;pr=nextprime(pr+1);s=s+pr; if(c==(i-1)/2, t=pr)); if(s/i==t, print1(t", ");f=1;break)); if(!f, print1("0, ")))

Extensions

Corrected and extended by Ralf Stephan, Apr 09 2003

A096707 Balanced primes (A090403) of index 3.

Original entry on oeis.org

53, 607, 977, 1289, 2083, 2351, 4013, 5563, 8803, 10657, 11117, 12583, 14747, 16433, 18731, 22067, 22699, 28477, 32833, 39227, 39749, 41957, 44357, 46229, 46643, 50053, 50123, 51869, 53617, 54469, 56167, 63377, 63527, 66797, 74729, 75217, 76597, 77023, 93997
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			607 is a member because 607 = (601 + 607 + 613)/3 =
(593 + 599 + 601 + 607 + 613 + 617 + 619)/7 = (401 + ... + 607 + ... + 823)/65.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 250], f[ # ] == 3 &]]

Extensions

a(37)-a(39) from Robert Price, Nov 29 2023

A096705 Balanced primes of index 1.

Original entry on oeis.org

5, 17, 29, 37, 71, 79, 89, 137, 149, 151, 179, 193, 227, 229, 257, 281, 359, 373, 383, 419, 421, 433, 487, 491, 563, 577, 593, 631, 643, 653, 659, 677, 701, 733, 757, 823, 877, 947, 953, 983, 991, 1013, 1021, 1087, 1091, 1103, 1123, 1171, 1193, 1217, 1223
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			17 is a member because 17 = (7 + 11 + 13 + 17 + 19 + 23 + 29)/7 only.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 250], f[ # ] == 1 &]]

A096706 Balanced primes (A090403) of index 2.

Original entry on oeis.org

211, 263, 349, 397, 409, 439, 709, 751, 787, 827, 1153, 1187, 1259, 1487, 1523, 1531, 2281, 2287, 2347, 2621, 3037, 3109, 3313, 3329, 3539, 3673, 4357, 4397, 4493, 4951, 4969, 4987, 5189, 5303, 5347, 5857, 6323, 6337, 7583, 7907, 7933, 8429, 8713, 8821, 8951
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			263 is a member because 263 = (257 + 263 + 269)/3
= (179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233 + 239 + 241 + 251 + 257 + 263 + 269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331 + 337 + 347 + 349 + 353)/31.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 250], f[ # ] == 2 &]]

Extensions

a(45) from Robert Price, Nov 29 2023

A096709 Balanced primes (A090403) of index 5.

Original entry on oeis.org

173, 124991, 232607, 491423, 701489, 1356337, 2455681, 3128803, 5218607, 9459683, 10563461, 13228247, 14606029, 16282921, 18216137, 20378273, 21622201, 35201909, 36549169, 38638969, 39246689, 42074017, 43048039, 48961859
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			124991 is a member because 124991 = (124673 + ... + 125329)/59
= (124543 + ... + 125423)/75 = (124193 + ... + 125777)/137 = (124133 + ... + 125887)/151
= (123931 + ... + 126031)/181.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 25797], f[ # ] == 5 &]]

Extensions

a(6)-a(24) from Donovan Johnson, Apr 09 2010

A096708 Balanced primes (A090403) of index 4.

Original entry on oeis.org

157, 353, 8233, 23893, 26183, 30197, 63697, 118831, 131041, 150203, 152213, 167033, 198013, 293087, 341303, 383983, 494051, 494723, 534007, 551569, 601949, 603541, 629203, 666697, 671287, 679417, 688907, 768203, 787207, 796867, 826039
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			353 is a member because 353 = (281 + ...353 + ... + 421)/23
= (271 + .. + 353 + ... + 433)/27 = (241 + ... + 353 + ... + 461)/37 = (227 + ... + 353 + ... + 487)/45.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 25797], f[ # ] == 4 &]]

Extensions

a(17)-a(31) from Donovan Johnson, Apr 09 2010
Previous Showing 11-20 of 20 results.