cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A097035 Initial values for the iteration of the function f(x) = A063919(x) such that the iteration ends in a 5-cycle, i.e., in A097024.

Original entry on oeis.org

570, 870, 1230, 1290, 1326, 1482, 1530, 1686, 1698, 1710, 1794, 1866, 1878, 1890, 2058, 2070, 2142, 2154, 2166, 2178, 2238, 2250, 2502, 2802, 2814, 3042, 3222, 3630, 3702, 3714, 3726, 4350, 4494, 4506, 4518, 4914, 5010, 5142, 5154, 5166, 5284, 5418
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n = 570: list = {570, 870, 1290, [1878, 1890, 2142, 2178, 1482], 1878}; after 3 transients, a 5-cycle arises.
n = 1230: {1230, 1794, 2238, 2250, 1530, 1710, [1890, 2142, 2178, 1482, 1878]} ; the iteration to the 5-cycle is not necessarily monotone. - _Hartmut F. W. Hoft_, Jan 25 2024
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    a097035Q[k_] := Module[{iter=NestWhileList[a063919, k, UnsameQ, All]}, Apply[Subtract, Reverse[Flatten[Position[iter, Last[iter]], 1]]]==5]
    a097035[n_] := Select[Range[n], a097035Q]
    a097035[5418] (* Hartmut F. W. Hoft, Jan 25 2024 *)

A127655 Numbers whose unitary aliquot sequences end in a unitary amicable pair, but which are not unitary amicable numbers themselves.

Original entry on oeis.org

102, 388, 436, 484, 812, 866, 1020, 1036, 1040, 1116, 1196, 1380, 1500, 1524, 1532, 1552, 1618, 1644, 1716, 1724, 1726, 1744, 1916, 2020, 2066, 2068, 2324, 2368, 2386, 2486, 2592, 2684, 2880, 2924, 3032, 3098, 3120, 3124, 3136, 3276, 3400, 3442, 3444, 3446, 3482
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Examples

			a(5)=812 because the fifth non-unitary amicable number whose unitary aliquot sequence ends in a unitary amicable pair is 812.
		

References

  • Riele, H. J. J. te; Unitary Aliquot Sequences. MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
  • Riele, H. J. J. te; Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;g[n_] := If[n > 0, sstar[n], 0];UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];UnitaryAmicableNumberQ[k_]:=If[Nest[sstar,k,2]?k && !sstar[k]?k,True,False];Select[Range[2500],!UnitaryAmicableNumberQ[ # ] && UnitaryAmicableNumberQ[Last[UnitaryTrajectory[ # ]]] &]

Extensions

More terms from Amiram Eldar, Apr 06 2019

A127652 Integers whose unitary aliquot sequences are longer than their ordinary aliquot sequences.

Original entry on oeis.org

25, 28, 36, 40, 50, 68, 70, 74, 94, 95, 98, 116, 119, 134, 142, 143, 154, 162, 170, 175, 182, 189, 190, 200, 220, 226, 242, 245, 262, 273
Offset: 1

Views

Author

Ant King, Jan 24 2007

Keywords

Comments

Here the length of an aliquot sequence is defined to be the length of the transient part of its trajectory + the length of its terminal cycle.

Examples

			a(5)=50 because the fifth integer whose unitary aliquot sequence is longer than its ordinary aliquot sequence is 50.
		

References

  • Riele, H. J. J. te; Unitary Aliquot Sequences. MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
  • Riele, H. J. J. te; Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;g[n_] := If[n > 0, sstar[n], 0];UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];s[n_]:=DivisorSigma[1,n]-n;h[n_] := If[n > 0, s[n], 0];OrdinaryTrajectory[n_] := Most[NestWhileList[h, n, UnsameQ, All]];Select[Range[275],Length[UnitaryTrajectory[ # ]]>Length[OrdinaryTrajectory[ # ]] &]

Formula

Sequence gives those values of n for which A097032(n)>A098007(n).

A098186 If f[x]=(sum of unitary-proper divisors of x)=A063919[x] is iterated, the iteration may lead to a fixed point which is either 0 or belongs to A002827, a unitary-perfect-number >1: 6,60,90,87360... Sequence gives initial values for which the iteration ends in 87360, the 4th unitary perfect number.

Original entry on oeis.org

87360, 232608, 356640, 465144, 527712, 565728, 713208, 1018248, 1055352, 1211352, 1240032, 1303728, 1316904, 1352568, 1357584, 1360416, 1379280, 1550472, 1690440, 1835592, 2035608, 2078328, 2110632, 2262892, 2422632
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Examples

			Iteration list started from n=1018248: {1018248, 1055352, 527712, 232608, 87360, 87360...}
		

Crossrefs

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x], Flatten[Position[GCD[di[x], Reverse[di[x]]], 1]]]; asu[x_] :=Apply[Plus, ud[x]]-x; nsf[x_, ho_] :=NestList[asu, x, ho] Do[g=n;s=Last[NestList[asu, n, 100]];If[Equal[s, 87360], Print[{n, s}]; ta=Append[ta, n]], {n, 1, 5000000}];ta = Delete[ta, 1]
Previous Showing 11-14 of 14 results.