cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A334175 Numbers that can be written as a product of two or more consecutive primorial numbers.

Original entry on oeis.org

2, 12, 180, 360, 6300, 37800, 75600, 485100, 14553000, 69369300, 87318000, 174636000, 14567553000, 15330615300, 437026590000, 2622159540000, 4951788741900, 5244319080000, 35413721343000, 2163931680210300, 7436881482030000, 148702215919257000, 223106444460900000
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2020

Keywords

Examples

			     2 = prime(0)# * prime(1)#;
    12 = prime(1)# * prime(2)#;
   180 = prime(2)# * prime(3)#;
   360 = prime(1)# * prime(2)# * prime(3)#;
  6300 = prime(3)# * prime(4)#,
  where prime(k)# is the product of the first k primes.
		

Crossrefs

A254859 Numbers that are both a sum and a product of two or more consecutive primes.

Original entry on oeis.org

15, 30, 77, 143, 210, 221, 323, 1001, 2310, 4199, 5767, 7429, 9797, 10403, 11021, 12317, 20711, 22499, 23707, 25591, 28891, 30030, 33263, 34571, 36863, 38021, 46189, 47053, 75067, 77837, 79523, 82861, 82919, 89951, 95477, 99221, 104927, 111547, 116939, 136891, 141367, 145157, 146969, 154433
Offset: 1

Views

Author

Altug Alkan, May 05 2016

Keywords

Examples

			15 is a term because 15 = 3 + 5 + 7 = 3*5.
30 is a term because 30 = 13 + 17 = 2*3*5.
77 is a term because 77 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 7*11.
		

Crossrefs

Intersection of A050936 and A097889.

Programs

  • Mathematica
    np = NextPrime; pro[n_] := Block[{e, f}, {f, e} = Transpose@ FactorInteger@ n; Length@ f > 1 && Union@ e == {1} && np@ Most@ f == Rest@ f]; seq[lim_] := Union[Reap[Block[{p = 2, q, s}, While[2 p < lim, q = np@p; s = p+q; While[s <= lim, If[pro@s, Sow@s]; q = np@q; s += q]; p = np@p]]][[2, 1]]]; seq[10^5] (* Giovanni Resta, May 05 2016 *)
  • Python
    # see link

A280992 Squarefree triangular numbers that are products of consecutive primes.

Original entry on oeis.org

1, 3, 6, 15, 105, 210, 255255
Offset: 1

Views

Author

Rick L. Shepherd, Jan 13 2017

Keywords

Comments

No more terms up to the 5000000th triangular number.
If a(8) exists, it's divisible by a prime p > prime(2000) = 17389. - David A. Corneth, Oct 21 2017

Examples

			The triangular number 255255 = 714*715/2 is a term because 255255 = 3*5*7*11*13*17 is a product of distinct consecutive primes.
1 (the empty product) is a term, so is 3 (the product of just one triangular number).
		

Crossrefs

Programs

  • Maple
    # reuses code of A097889 and A061304
    isA280992 := proc(n)
        isA097889(n) and isA061304(n) ;
    end proc:
    for t from 0 do
        n := t*(t+1)/2 ;
        if isA280992(t) then
            print(t) ;
        end if;
    end do: # R. J. Mathar, Oct 20 2017
  • Mathematica
    Select[PolygonalNumber@ Range[10^5], And[NoneTrue[#[[All, -1]], # > 1 &], Union@ Differences[PrimePi[#[[All, 1]] ] ] == {1}] &@ FactorInteger@ # &] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    is(n) = my(f=factor(n)[, 1]); for(k=1, #f-1, if(f[k+1]!=nextprime(f[k]+1), return(0))); ispolygonal(n, 3) && issquarefree(n)
    search(start) = if(start < 4, if(start < 2, print1(1, ", ")); print1(3, ", ")); forcomposite(c=start, , if(is(c), print1(c, ", ")))
    /* Start a search from 1 upwards as follows: */
    search(1) \\ Felix Fröhlich, Oct 21 2017 [Corrected Jun 10, 2019]
    
  • PARI
    uptoprime(n) = {my(prim = vector(n), i = 2, res = List([1]));  prim[1] = 2; forprime(p = 3, , prim[i] = prim[i - 1] * p; i++; if(i>n, break));
    for(i=1, n, if(issquare(8 * prim[i] + 1), listput(res, prim[i])); for(j=1, i-1, c = prim[i]/prim[j]; if(issquare(8 * c + 1), listput(res, c)))); listsort(res); res} \\ David A. Corneth, Oct 21 2017

Extensions

1 and 3 prepended by David A. Corneth, Oct 21 2017
Previous Showing 11-13 of 13 results.