cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 12, 15, 40, 22, 48, 26, 56, 60, 16, 34, 60, 38, 80, 84, 88, 46, 72, 35, 104, 24, 112, 58, 240, 62, 20, 132, 136, 140, 120, 74, 152, 156, 120, 82, 336, 86, 176, 150, 184, 94, 96, 63, 140, 204, 208, 106, 96, 220, 168, 228, 232, 118, 480
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Last[Select[Divisors[d], SquareFreeQ]] Last[Select[Divisors[n/d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e - 1)*p^2 + 2*p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A349694(n) = sumdiv(n,d,A007947(n/d)*A007947(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + p^(1-s) - p^(-s))^2.
a(n) = Sum_{d|n} A007947(d) * A007947(n/d).
a(n) = Sum_{d|n} abs(A097945(d)) * A191750(n/d).
Multiplicative with a(p^e) = (e-1)*p^2 + 2*p. - Amiram Eldar, Nov 25 2021
From Vaclav Kotesovec, Nov 26 2021: (Start)
Dirichlet g.f.: zeta(s-1)^2 * zeta(s)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))^2.
Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then
Sum_{k=1..n} a(k) ~ Pi^2 * f(2)^2 * n^2 / 144 * (Pi^2 * (2*log(n) + 4*gamma - 1 + 4*f'(2)/f(2)) + 24*zeta'(2)), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858..., zeta'(2) = -A073002 and gamma is the Euler-Mascheroni constant A001620. (End)

A097927 If a(n-1) is divisible by 2 then a(n) = a(n-1)/2. If a(n-1) is not divisible by 2 then a(n) = 47-(a(n-1)+1)/2; a(0)=1.

Original entry on oeis.org

1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23, 35, 29, 32, 16, 8, 4, 2, 1, 46, 23
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2008, based on email from Zak Seidov, May 12 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A097945.
Periodic, with period = 10. - Harvey P. Dale, Sep 30 2016

Programs

  • Maple
    a:=proc(n) option remember; local k; k:=47;
    if n=0 then RETURN(1); fi;
    if a(n-1) mod 2 = 0 then RETURN(a(n-1)/2); fi;
    RETURN(k-(a(n-1)+1)/2); end;
  • Mathematica
    NestList[If[EvenQ[#],#/2,47-(#+1)/2]&,1,90] (* or *) PadRight[{},90,{1,46,23,35,29,32,16,8,4,2}] (* Harvey P. Dale, Sep 30 2016 *)

Formula

Periodic with period of length 10.

Extensions

Definition corrected by Harvey P. Dale, Sep 30 2016

A127475 Triangle T(n,k) read by rows: T(n,k) = mu(n)*phi(k) if k|n, else T(n,k)=0.

Original entry on oeis.org

1, -1, -1, -1, 0, -2, 0, 0, 0, 0, -1, 0, 0, 0, -4, 1, 1, 2, 0, 0, 2, -1, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Examples

			The triangle starts in row n=1 as:
1;
-1, -1;
-1, 0, -2;
0, 0, 0, 0;
-1, 0, 0, 0, -4;
1, 1, 2, 0, 0, 2;
-1, 0, 0, 0, 0, 0, -6;
...
		

Crossrefs

Cf. A008683, A054522, A055615 (row sums), A097945, A023900.

Formula

T(n,k) = A054522(n,k)*A008683(n).
T(n,1) = A008683(n) = mu(n).
T(n,n) = A097945(n).
Previous Showing 21-23 of 23 results.