cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A097947 Expansion of g.f. (2+7*x+2*x^2)/((x^2-1)*(1+4*x+x^2)).

Original entry on oeis.org

-2, 1, -6, 16, -62, 225, -842, 3136, -11706, 43681, -163022, 608400, -2270582, 8473921, -31625106, 118026496, -440480882, 1643897025, -6135107222, 22896531856, -85451020206, 318907548961, -1190179175642, 4441809153600, -16577057438762, 61866420601441, -230888624967006
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

Keywords

Comments

One of 4 related sequences. This is the sequence "les(n)". "jes(n)" = [1, -4, 15, -56, ...] is (-1)^(n+1)*A001353(n+1), "tes(n)" is A097948 and "ves(n)" is A099949.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4, 0, 4, 1}, {-2, 1, -6, 16}, 27] (* Robert P. P. McKone, Aug 25 2023 *)

Formula

Properties (from Creighton Dement, Sep 06 2004):
I: jes(n) + les(n) + tes(n) = ves(n)
II: All of the following are perfect squares: {les(2n+1); tes(2n+1); ves(2n+1); ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1; 3*les(2n+1) + 1 = 3*jes(n)^2 + 1}.
III: les(2n+1) divides ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1
IV: (jes(n))^2 = les(2n+1)
V: tes(2n) = A001570(n), sqrt( tes(2n+1) ) = A001075(n)
VI: sqrt( ves(2n+1) ) = A001835(n)
VII: sqrt( les(2n+1) ) = A001353(n)
VIII: les(n) + tes(n) = ves(2+n) + jes(n)
IX: lim n |jes(n+1)/jes(n)| = lim n |les(n+1)/les(n)| = lim n |tes(n+1)/tes(n)| = lim n |ves(n+1)/ves(n)| = 2 + sqrt(3)
Comment from Roland Bacher, Sep 07 2004: These 4 sequences satisfy jes(n+1)=-4*jes(n)-jes(n-1), les(n+1)=les(n-1)+jes(n), ves(n+1)=les(n-1)-jes(n-1)+tes(n-1), tes(n+1)=les(n-1)+3*jes(n), plus initial conditions for n=0, 1.
12*a(n) = -11 -9*(-1)^n -2*(-1)^n*A001075(n+1). - R. J. Mathar, May 21 2019
From Eric Simon Jacob, Aug 26 2023: (Start)
a(n) = ( ( sqrt(3) - 2 )^(n+1) + ( -sqrt(3) - 2 )^(n+1) + 9*(-1)^(n+1) - 11 )/12.
a(n) = ( 2*cosh( (n+1)*log(sqrt(3) - 2) ) + 9*(-1)^(n+1) - 11 )/12. (End)

A097949 G.f.: -(2+7*x-x^3)/(1+4*x-4*x^3-x^4).

Original entry on oeis.org

-2, 1, -4, 9, -34, 121, -452, 1681, -6274, 23409, -87364, 326041, -1216802, 4541161, -16947844, 63250209, -236052994, 880961761, -3287794052, 12270214441, -45793063714, 170902040409, -637815097924, 2380358351281, -8883618307202, 33154114877521, -123732841202884
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

Keywords

Comments

This is the sequence "ves(n)".

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2+7x-x^3)/(1+4x-4x^3-x^4),{x,0,40}],x] (* or *) LinearRecurrence[{-4,0,4,1},{-2,1,-4,9},40] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = -(-1)^n - (1/6)*( ( -sqrt(3) - 2 )^n + ( sqrt(3) - 2 )^n ) - 2/3. - Eric Simon Jacob, Aug 18 2023
Previous Showing 11-12 of 12 results.