A257635
Triangle with n-th row polynomial equal to Product_{k = 1..n} (x + n + k).
Original entry on oeis.org
1, 2, 1, 12, 7, 1, 120, 74, 15, 1, 1680, 1066, 251, 26, 1, 30240, 19524, 5000, 635, 40, 1, 665280, 434568, 117454, 16815, 1345, 57, 1, 17297280, 11393808, 3197348, 495544, 45815, 2527, 77, 1, 518918400, 343976400, 99236556, 16275700, 1659889, 107800, 4354, 100, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 2, 1;
[2] 12, 7, 1;
[3] 120, 74, 15, 1;
[4] 1680, 1066, 251, 26, 1;
[5] 30240, 19524, 5000, 635, 40, 1;
[6] 665280, 434568, 117454, 16815, 1345, 57, 1;
...
-
seq(seq(coeff(product(n + x + k, k = 1 .. n), x, i), i = 0..n), n = 0..8);
# Alternative:
p := n -> n!*hypergeom([-n, -x + n], [-n], 1):
seq(seq((-1)^k*coeff(simplify(p(n)), x, k), k=0..n), n=0..6); # Peter Luschny, Nov 27 2021
-
p[n_, x_] := FunctionExpand[Gamma[2*n + x + 1] / Gamma[n + x + 1]];
Table[CoefficientList[p[n, x], x], {n,0,8}] // Flatten (* Peter Luschny, Mar 21 2022 *)
A384136
a(n) = (3*n)!/(2*n)! * Sum_{k=1..n} 1/(2*n+k).
Original entry on oeis.org
1, 11, 191, 4578, 140274, 5238132, 230784840, 11720201616, 674092013040, 43310839531680, 3074579815271040, 238983481496188800, 20187063842072319360, 1841332369689189619200, 180372122189263722009600, 18885338733119777188300800, 2104722524872544008142592000
Offset: 1
-
a(n) = sum(k=0, n, k*(2*n+1)^(k-1)*abs(stirling(n, k, 1)));
A384167
a(n) = 2^n * n! * binomial(3*n/2,n) * Sum_{k=1..n} 1/(n+2*k).
Original entry on oeis.org
1, 10, 143, 2736, 66009, 1926912, 66086271, 2605455360, 116123049585, 5774107852800, 316921177332495, 19032668386099200, 1241454631056114825, 87402945316493721600, 6606130538582006306175, 533534147838972474163200, 45855293972076668267481825, 4178822478568980876361728000
Offset: 1
-
a(n) = sum(k=0, n, k*(n+2)^(k-1)*2^(n-k)*abs(stirling(n, k, 1)));
A384168
a(n) = 3^n * n! * binomial(4*n/3,n) * Sum_{k=1..n} 1/(n+3*k).
Original entry on oeis.org
1, 13, 234, 5566, 165944, 5966136, 251491120, 12169996912, 665146831680, 40530954643840, 2724842629685120, 200361647815660800, 15997170878205905920, 1378271357428552115200, 127459020533529062246400, 12593128815600367187507200, 1323895109721239722075136000
Offset: 1
-
a(n) = sum(k=0, n, k*(n+3)^(k-1)*3^(n-k)*abs(stirling(n, k, 1)));
A384169
a(n) = 4^n * n! * binomial(5*n/4,n) * Sum_{k=1..n} 1/(n+4*k).
Original entry on oeis.org
1, 16, 347, 9856, 349269, 14885760, 742589175, 42479124480, 2742327328905, 197267905658880, 15649214440432275, 1357388618032742400, 127808331929417605725, 12983375200126773657600, 1415428114244995252270575, 164837363498660501913600000, 20423530465926352502482292625
Offset: 1
-
a(n) = sum(k=0, n, k*(n+4)^(k-1)*4^(n-k)*abs(stirling(n, k, 1)));
A253669
Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](log(x+1)*sum(j=0..n, C(2*n,j)*x^j)), n>=0, k>=0.
Original entry on oeis.org
0, 0, 1, 0, 1, -1, 0, 1, 3, 2, 0, 1, 7, -4, -6, 0, 1, 11, 26, 10, 24, 0, 1, 15, 74, -46, -36, -120, 0, 1, 19, 146, 342, 144, 168, 720, 0, 1, 23, 242, 1066, -756, -624, -960, -5040, 0, 1, 27, 362, 2414, 5944, 2844, 3408, 6480, 40320, 0, 1, 31, 506, 4578, 19524
Offset: 0
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 0, 1, -1, 2, -6, 24, -120, ...
[1] 0, 1, 3, -4, 10, -36, 168, ...
[2] 0, 1, 7, 26, -46, 144, -624, ...
[3] 0, 1, 11, 74, 342, -756, 2844, ...
[4] 0, 1, 15, 146, 1066, 5944, -15768, ...
[5] 0, 1, 19, 242, 2414, 19524, 127860, ...
[6] 0, 1, 23, 362, 4578, 48504, 434568, ...
The first few rows as a triangle:
0,
0, 1,
0, 1, -1,
0, 1, 3, 2,
0, 1, 7, -4, -6,
0, 1, 11, 26, 10, 24,
0, 1, 15, 74, -46, -36, -120,
0, 1, 19, 146, 342, 144, 168, 720.
-
T := (n,k) -> k!*coeff(series(ln(x+1)*add(binomial(2*n,j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n,k), k=0..6)) od;
Comments