cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A205325 Decimal expansion of the limit of [0;1,1,...] + [0;2,2,...] + ... + [0;n,n,...] - log(n) as n approaches infinity.

Original entry on oeis.org

0, 4, 1, 6, 6, 6, 2, 6, 2, 7, 6, 3, 4, 8, 4, 8, 1, 0, 8, 7, 0, 1, 1, 6, 3, 5, 8, 5, 6, 9, 2, 3, 2, 0, 7, 4, 3, 1, 2, 5, 4, 5, 4, 6, 7, 5, 2, 8, 4, 1, 6, 3, 1, 8, 0, 9, 2, 0, 1, 3, 5, 9, 2, 3, 2, 9, 9, 1, 6, 4, 5, 7, 7, 5, 1, 2, 6, 2, 5, 5, 3, 7, 8, 3, 9, 5, 0, 3
Offset: 0

Views

Author

Martin Janecke, Jan 26 2012

Keywords

Examples

			0.0416662....
		

Crossrefs

Cf. A001620, A205326, continued fractions A001622, A014176, A098316, A098317, A098318.

Programs

  • Mathematica
    digits = 10; dn = 1000000; Clear[f]; f[n_] := NSum[2/(k + Sqrt[k^2+4]) - 1/k, {k, 1, Infinity}, NSumTerms -> 200000, WorkingPrecision -> digits+10, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 20}}] + EulerGamma // RealDigits[#, 10, digits+2]& // First; f[dn]; f[n = 2*dn]; While[f[n] != f[n-dn], n = n+dn]; Prepend[ f[n][[1 ;; digits]], 0] (* Jean-François Alcover, Feb 25 2013 *)

Formula

lim_{n->infinity} (1/[1;1,...] + 1/[2;2,...] + 1/[3;3,...] + ... + 1/[n;n,...] - log(n)).
lim_{n->infinity} (sum_{k=1...n} (2/(k + sqrt(k^2 + 4))) - log(n)).

Extensions

More terms from Jean-François Alcover, Feb 25 2013
More terms from Jon E. Schoenfield, Jan 05 2014

A205326 Decimal expansion of the sum of [0;n,n,n,...]^2 for n=1..infinity.

Original entry on oeis.org

9, 1, 5, 5, 8, 7, 9, 1, 9, 9, 0, 1, 8, 1, 9, 7, 2, 5, 1, 9, 9, 8, 1, 6, 8, 5, 3, 8, 0, 3, 1, 9, 0, 0, 8, 9, 7, 3, 5, 3, 2, 0, 4, 6, 0, 1, 8, 9, 6, 6, 9, 0, 2, 4, 1, 2, 2, 7, 6, 9, 5, 1, 7, 0, 9, 6, 2, 1, 8, 2, 7, 0, 5, 5, 6, 4, 6, 5, 3, 3, 5, 9, 7, 5, 5, 3, 7
Offset: 0

Views

Author

Martin Janecke, Jan 26 2012

Keywords

Comments

This is the total area of all squares with sides parallel to the axes of the Cartesian coordinate system, the lower left vertex at (n,0) and the upper right vertex on f(x)=1/x for n=1..infinity.

Examples

			0.9155879199018197251998168538031900897353...
		

Crossrefs

Cf. A013661, A205325, continued fractions A001622, A014176, A098316, A098317, A098318.

Programs

Formula

Sum_{n>=1} 1/[n;n,n,...]^2.
Sum_{n>=1} 4/(n + sqrt(n^2 + 4))^2.

Extensions

a(-5)-a(-86) from Charles R Greathouse IV, Jan 26 2012

A223141 Decimal expansion of (sqrt(29) - 1)/2.

Original entry on oeis.org

2, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2013

Keywords

Comments

Decimal expansion of sqrt(7 - sqrt(7 - sqrt(7 - sqrt(7 - ... )))).
Sequence with a(1) = 3 is decimal expansion of sqrt(7 + sqrt(7 + sqrt(7 + sqrt(7 + ... )))) - A223140.

Examples

			2.1925824035672520156253552457701...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[29] - 1)/2, 10, 130][[1]]

Formula

Closed form: (sqrt(29) - 1)/2 = A098318-3 = 10*A085551+2 = A223140-1.
sqrt(7 - sqrt(7 - sqrt(7 - sqrt(7 - ... )))) + 1 = sqrt(7 + sqrt(7 + sqrt(7 + sqrt(7 + ... )))). See A223140.

A261574 a(n) = n*(n^2 + 3)*(n^6 + 6*n^4 + 9*n^2 + 3).

Original entry on oeis.org

0, 76, 2786, 46764, 439204, 2744420, 12813606, 48229636, 153992264, 432083484, 1092730090, 2537720636, 5489037036, 11179326964, 21624372014, 40001698260, 71163830416, 122319408236, 203920464114, 330799604044, 523606640180, 810600392196, 1229857906486
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^9 - 1/(n-th metallic mean)^9, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n*(n^2+3)*(n^6+6*n^4+9*n^2+3): n in [0..25]]; // Bruno Berselli, Aug 25 2015
  • Mathematica
    Table[n (n^2 + 3) (n^6 + 6 n^4 + 9 n^2 + 3), {n, 0, 25}] (* Bruno Berselli, Aug 25 2015 *)
  • PARI
    concat(0, Vec(2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10 + O(x^50))) \\ Colin Barker, Aug 25 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^9-1/( (n+sqrt(n^2+4))/2 )^9.
G.f.: 2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10. - Colin Barker, Aug 25 2015

Extensions

Formula in Name by Colin Barker, Aug 25 2015
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A351898 Decimal expansion of metallic ratio for N = 14.

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9
Offset: 2

Views

Author

A.H.M. Smeets, Feb 24 2022

Keywords

Comments

Decimal expansion of continued fraction [14; 14, 14, 14, ...].
Also largest solution of x^2 - 14 x - 1 = 0.
Essentially the same digit sequence as A010503, A157214, A174968 and A268683.
The metallic ratio's for N = A077444(n) are equal to powers of the silver ratio, i.e., A014166^(2n-1); this constant represents the special case for N = A077444(2).

Examples

			14.0710678118654752440084436210484903928483593...
		

Crossrefs

Metallic ratios: A001622 (N=1), A014176 (N=2), A098316 (N=3), A098317 (N=4), A098318 (N=5), A176398 (N=6), A176439 (N=7), A176458 (N=8), A176522 (N=9), A176537 (N=10), A244593 (N=11).

Programs

  • Mathematica
    RealDigits[7 + 5*Sqrt[2], 10, 100][[1]] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    (1+sqrt(2))^3

Formula

Equals 2 + 5*A014176.
Equals A014176^3.
Equals exp(arcsinh(7)). - Amiram Eldar, Jul 04 2023
Previous Showing 11-15 of 15 results.