cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A112821 Numbers n such that lcm(1,2,3,...,n)/19 equals the denominator of the n-th harmonic number H(n).

Original entry on oeis.org

343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

Positions where 19 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 19, AppendTo[t, n]], {n, 10^6}]; t
    Select[Range[500],Denominator[HarmonicNumber[#]]==LCM@@Range[#]/19&] (* Harvey P. Dale, Jan 29 2012 *)

Extensions

Definition corrected by Max Alekseyev, Mar 03 2007

A112810 Records in A110566 (lcm{1,2,...,n}/denominator of harmonic number H(n)).

Original entry on oeis.org

1, 3, 15, 45, 77, 275, 931, 1725, 1935, 5805, 29025, 41175, 166803, 1039533, 1162047, 91801713, 419498967, 2183383175, 19691916585, 216611082435, 2382721906785, 113804487945521, 22211221792244703, 422013214052649357, 425137351586922079, 936039253001457601
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, b]], {n, 10^6}]; t
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(new, ", "); rec = new););} \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A110566(A112809(n)).

Extensions

a(25)-a(26) from Max Alekseyev, Nov 29 2013

A330680 Numbers that begin a run of consecutive integers k such that the denominator of the k-th harmonic number is lcm(1..k).

Original entry on oeis.org

1, 9, 27, 49, 88, 125, 243, 289, 361, 484, 841, 968, 1164, 1331, 1369, 2401, 3125, 3488, 3721, 6889, 7085, 7761, 7921, 8342, 8502, 9156, 10648, 19683, 22208, 22801, 25886, 28561, 29929, 30877, 32041, 32761, 33178, 36481, 59049, 83521, 87079, 88307, 92199
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 24 2019

Keywords

Comments

A098464 lists the numbers k such that lcm(1,2,3,...,k) equals the denominator of the k-th harmonic number H(k) = 1/1 + 1/2 + 1/3 + ... + 1/k.

Examples

			The numbers k such that the denominator of the k-th harmonic number equals lcm(1..k) begin with the following runs of consecutive integers:
    1,   2,   3,   4,   5;
    9,  10,  11,  12,  13,  14,  15,  16,  17;
   27,  28,  29,  30,  31,  32;
   49,  50,  51,  52,  53;
   88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,  99;
  125, 126, 127, ...
so this sequence begins 1, 9, 27, 49, 88, 125, ...
		

Crossrefs

Cf. A002805 (denominator of H(n)), A003418 (lcm(1..n)), A098464 (numbers k such that A002805(k)=A003418(k)).

A342350 Numbers k such that lcm(1,2,3,...,k)/21 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

38272753, 38272754, 38272755, 38272756, 38272757, 38272758, 38272759, 38272760, 38272761, 38272762, 38272763, 38272764, 38272765, 38272766, 38272767, 38272768, 38272769, 38272770, 38272771, 38272772, 38272773, 38272774, 38272775, 38272776, 38272777, 38272778
Offset: 1

Views

Author

Chai Wah Wu, Mar 17 2021

Keywords

Comments

Positions where 21 occurs in A110566.

Crossrefs

A358557 Numbers k for which denominator(H(k)) < LCM(1..k), where harmonic numbers H(k) = Sum_{i=1..k} 1/i = r(k)/q(k).

Original entry on oeis.org

6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 100, 101, 102
Offset: 1

Views

Author

Yifan Xie, Nov 22 2022

Keywords

Comments

LCM(1..k) is a common denominator for the harmonic numbers, and the present terms k are where the sum reduces to a smaller denominator (A002805).
We can find a prime p and a pair of positive integers t < p and o for every positive integer k that p^o*t <= k < p^o*(t+1). For positive integers i that are not divisible by p^o, a multiple of p will be added to the numerator of the reciprocal sum; for i's that are divisible by p^o, the number that will be added to the numerator of the reciprocal sum is divisible by r(t). So k is in the sequence if and only if p^o*t <= k < p^o*(t+1) where p is a prime and p divides r(t).
The sequence is the answer to Problem 23 of the 2022 AMC12A.

Crossrefs

Cf. A001008/A002805 (harmonic numbers), A003418 (LCM).
Cf. A110566 (common factor).
Cf. A098464 (complement), A112813.
Cf. A330680 (numbers that begin a run of consecutive integers not in the sequence).

Programs

  • Mathematica
    Select[Range[100], Denominator[HarmonicNumber[#]] < LCM @@ Range[#] &] (* Amiram Eldar, Nov 25 2022 *)
  • PARI
    isok(n) = lcm(vector(n, i, i)) <> denominator(sum(i=1, n, 1/i)); \\ Thomas Scheuerle, Nov 23 2022

Formula

A110566(a(n)) > 1. - Thomas Scheuerle, Nov 23 2022

A112809 Positions of records in A110566.

Original entry on oeis.org

1, 6, 20, 21, 42, 120, 342, 506, 567, 594, 600, 610, 2184, 4896, 6108, 6162, 6498, 12760, 14067, 14157, 14201, 93942, 123462, 123519, 734413, 2451397, 4591010, 11571129, 13346540, 13619348, 13619790, 46180567
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, n]], {n, 10^6}]; t
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(n, ", "); rec = new););} \\ Michel Marcus, Mar 07 2018

Extensions

a(27)-a(28) from Amiram Eldar, Dec 18 2018
a(29)-a(31) from Chai Wah Wu, Mar 08 2021
a(32) from Chai Wah Wu, Mar 14 2021

A342351 Numbers k such that lcm(1,2,3,...,k)/23 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

11881, 11882, 11883, 11884, 11885, 11886, 11887, 11888, 11889, 11890, 11891, 11892, 11893, 11894, 11895, 11896, 11897, 11898, 11899, 11900, 11901, 11902, 11903, 11904, 11905, 11906, 11907, 11908, 11909, 11910, 11911, 11912, 11913, 11914, 11915, 11916, 11917
Offset: 1

Views

Author

Chai Wah Wu, Mar 17 2021

Keywords

Comments

Positions where 23 occurs in A110566.

Crossrefs

Previous Showing 11-17 of 17 results.