cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A132271 Product{k>=0, 1+floor(n/10^k)}.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 427
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-10 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).

Examples

			a(12)=(1+floor(12/10^0))*(1+floor(12/10^1))=13*2=26; a(21)=63 since 21=21(base-10) and so
a(21)=(1+21)*(1+2)(base-10)=22*3=66.
		

Crossrefs

For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = 1}, While[a = Floor[n/10^k]; a > 0, p *= 1 + a; k++]; p]; Array[f, 61, 0] (* Robert G. Wilson v, May 10 2011 *)
    Table[Product[1+Floor[n/10^k],{k,0,n}],{n,0,60}] (* Harvey P. Dale, May 14 2019 *)

Formula

The following formulas are given for a general parameter p considering the product of terms 1+floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=10 for this sequence.
Recurrence: a(n)=(1+n)*a(floor(n/p)); a(pn)=(1+pn)*a(n); a(n*p^m)=product{1<=k<=m, 1+n*p^k}*a(n).
a(k*p^m-j)=(k*p^m-j+1)*k^m*p^(m(m-1)/2), for 0=1, a(p^m)=p^(m(m+1)/2)*product{0<=k<=m, 1+1/p^k}, m>=1.
a(n)=A132272(p*n)=(1+n)*A132272(n).
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=A067080(n)*product{0<=k<=floor(log_p(n)), 1+1/p^k}.
a(n)>=A067080(n)/product{1<=k<=floor(log_p(n)), 1-1/p^k}.
a(n)A000217(log_p(n)), where c=product{k>=0, 1+1/p^k}=2.2244691382741012... (for p=10 see constant A132325).
a(n)>n^((1+log_p(n))/2)=p^A000217(log_p(n)).
lim sup a(n)/A067080(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n)/A067080(n)=1/product{k>0, 1-1/p^k}=1/0.8900100999989990000001000..., for n-->oo (for p=10 see constant A132038).
lim inf a(n)/n^((1+log_p(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012... for n-->oo (for p=10 see constant A132325).

A054897 a(n) = Sum_{k>0} floor(n/8^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12
Offset: 0

Views

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from the highest power of 8 dividing n!, A090617.

Examples

			a(100) = 13.
a(10^3) = 141.
a(10^4) = 1427.
a(10^5) = 14284.
a(10^6) = 142855.
a(10^7) = 1428569.
a(10^8) = 14285710.
a(10^9) = 142857138.
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

  • Magma
    m:=8;
    function a(n) // a = A054897
      if n eq 0 then return n;
      else return a(Floor(n/m)) + Floor(n/m);
      end if;
    end function;
    [a(n): n in [0..103]]; // G. C. Greubel, Apr 28 2023
    
  • Mathematica
    Table[t=0; p=8; While[s=Floor[n/p]; t=t+s; s>0, p *= 8]; t, {n,0,100}]
  • Python
    def A054897(n): return (n-sum(int(d) for d in oct(n)[2:]))//7 # Chai Wah Wu, Jul 09 2022
    
  • SageMath
    m=8 # a = A054897
    def a(n): return 0 if (n==0) else a(n//m) + (n//m)
    [a(n) for n in range(104)] # G. C. Greubel, Apr 28 2023

Formula

a(n) = floor(n/8) + floor(n/64) + floor(n/512) + floor(n/4096) + ....
a(n) = (n - A053829(n))/7.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/8) + a(floor(n/8));
a(8*n) = n + a(n);
a(n*8^m) = n*(8^m-1)/7 + a(n).
a(k*8^m) = k*(8^m-1)/7, for 0 <= k < 8, m >= 0.
Asymptotic behavior:
a(n) = n/7 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/7; equality holds for powers of 8.
a(n) >= (n-7)/7 - floor(log_8(n)); equality holds for n=8^m-1, m>0.
lim inf (n/7 - a(n)) = 1/7, for n -> oo.
lim sup (n/7 - log_8(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_8(n)) = 0, for n -> oo.
G.f.: g(x) = ( Sum_{k>0} x^(8^k)/(1-x^(8^k)) )/(1-x). (End)
Partial sums of A244413. - R. J. Mathar, Jul 08 2021

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A054898 a(n) = Sum_{k>0} floor(n/9^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Views

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from the highest power of 9 dividing n!, A090618.

Examples

			a(100)=12.
a(10^3)=124.
a(10^4)=1248.
a(10^5)=12498.
a(10^6)=124996.
a(10^7)=1249997.
a(10^8)=12499996.
a(10^9)=124999997.
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

  • Mathematica
    Table[t = 0; p = 9; While[s = Floor[n/p]; t = t + s; s > 0, p *= 9]; t, {n, 0, 100} ]
    Table[Sum[Floor[n/9^k],{k,n}],{n,0,100}] (* Harvey P. Dale, Jul 10 2024 *)

Formula

a(n) = floor(n/9) + floor(n/81) + floor(n/729) + floor(n/6561) + ....
a(n) = (n-A053830(n))/8.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/9) + a(floor(n/9));
a(9*n) = n + a(n);
a(n*9^m) = n*(9^m-1)/8 + a(n).
a(k*9^m) = k*(9^m-1)/8, for 0<=k<9, m>=0.
Asymptotic behavior:
a(n) = n/8 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/8; equality holds for powers of 9.
a(n) >= (n-8)/8 - floor(log_9(n)); equality holds for n=9^m-1, m>0.
lim inf (n/8 - a(n)) =1/8, for n-->oo.
lim sup (n/8 - log_9(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_9(n)) = 0, for n-->oo.
G.f.: g(x) = sum{k>0, x^(9^k)/(1-x^(9^k))}/(1-x). (End)

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A132028 Product{0<=k<=floor(log_4(n)), floor(n/4^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 45, 64, 68, 72, 76, 100, 105, 110, 115, 144, 150, 156, 162, 196, 203, 210, 217, 512, 528, 544, 560, 648, 666, 684, 702, 800, 820, 840, 860, 968, 990, 1012, 1034, 1728, 1764, 1800, 1836, 2028, 2067, 2106, 2145, 2352
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-4 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(26)=floor(26/4^0)*floor(26/4^1)*floor(26/4^2)=26*6*1=156; a(34)=544 since 34=202(base-4) and so
a(34)=202*20*2(base-4)=34*8*2=544.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/4)); a(n*4^m)=n^m*4^(m(m+1)/2)*a(n).
a(k*4^m)=k^(m+1)*4^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_4(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_4(n)))/4^((1+floor(log_4(n)))*floor(log_4(n))/2); equality holds for n=k*4^m, 0=0. b(n) can also be written n^(1+floor(log_4(n)))/4^A000217(floor(log_4(n))).
Also: a(n)<=2^(1/4)*n^((1+log_4(n))/2)=1.189207...*4^A000217(log_4(n)), equality holds for n=2*4^m, m>=0.
a(n)>c*b(n), where c=0.4194224417951075977... (see constant A132020).
Also: a(n)>c*2^(1/4)*n^((1+log_4(n))/2)=0.498780...*4^A000217(log_4(n)).
lim inf a(n)/b(n)=0.4194224417951075977..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_4(n))/2)=0.4194224417951075977...*2^(1/4), for n-->oo.
lim sup a(n)/n^((1+log_4(n))/2)=2^(1/4), for n-->oo.
lim inf a(n)/a(n+1)=0.4194224417951075977... for n-->oo (see constant A132020).

A132022 Decimal expansion of Product_{k>=0} (1 - 1/(2*6^k)).

Original entry on oeis.org

4, 5, 0, 7, 1, 2, 6, 2, 5, 2, 2, 6, 0, 3, 9, 1, 3, 0, 8, 3, 0, 0, 0, 0, 7, 8, 9, 5, 8, 3, 5, 2, 7, 1, 5, 5, 6, 0, 4, 4, 6, 7, 8, 5, 0, 0, 5, 4, 0, 0, 8, 5, 4, 7, 4, 3, 9, 0, 4, 5, 8, 3, 4, 8, 9, 2, 4, 4, 0, 9, 6, 0, 7, 5, 4, 0, 6, 2, 9, 4, 0, 7, 8, 2, 4, 3, 5, 3, 4, 5, 3, 1, 8, 6, 0, 8, 9, 6, 2, 6, 9, 2, 7
Offset: 0

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.45071262522603913...
		

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*6^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    (1/2)*N[QPochhammer[1/12, 1/6], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(x=0, 1-1/(2*6^x)) \\ Altug Alkan, Dec 20 2015

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_6(n))} floor(n/6^k)*6^k/n.
Equals lim inf_{n->oo} A132030(n)/n^(1+floor(log_6(n)))*6^(1/2*(1+floor(log_6(n)))*floor(log_6(n))).
Equals lim inf_{n->oo} A132030(n)/n^(1+floor(log_6(n)))*6^A000217(floor(log_6(n))).
Equals (1/2)*exp(-Sum_{n>0} 6^(-n)*Sum{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132030(n)/A132030(n+1).
Equals (1/2)*(1/12; 1/6){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
Equals Product_{n>=1} (1 - 1/A167747(n)). - Amiram Eldar, May 09 2023

A132024 Decimal expansion of Product_{k>=0} (1-1/(2*8^k)).

Original entry on oeis.org

4, 6, 4, 5, 6, 8, 8, 8, 3, 6, 8, 6, 4, 7, 6, 3, 9, 0, 9, 8, 1, 9, 5, 9, 5, 6, 9, 7, 4, 8, 4, 7, 8, 0, 1, 0, 8, 7, 0, 0, 5, 8, 5, 1, 5, 4, 9, 5, 1, 2, 3, 0, 6, 5, 5, 6, 6, 0, 8, 5, 6, 0, 5, 9, 7, 0, 6, 0, 9, 9, 5, 7, 6, 2, 7, 4, 4, 1, 5, 4, 3, 8, 4, 8, 7, 8, 8, 8, 1, 2, 5, 0, 7, 6, 2, 1, 9, 4, 7, 0, 8, 1, 7
Offset: 0

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.46456888368647639098...
		

Programs

  • Mathematica
    RealDigits[QPochhammer[1/2,1/8],10,120][[1]] (* Harvey P. Dale, May 23 2011 *)
  • PARI
    prodinf(k=0, 1 - 1/(2*8^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_8(n))} floor(n/8^k)*8^k/n.
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^(1/2*(1+floor(log_8(n)))*floor(log_8(n))).
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^A000217(floor(log_8(n))).
Equals (1/2)*exp(-Sum_{n>0} 8^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132032(n)/A132032(n+1).
Equals Product_{n>=0} (1 - 1/A013730(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Amiram Eldar, May 09 2023

A132029 Product{0<=k<=floor(log_5(n)), floor(n/5^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 22, 24, 26, 28, 45, 48, 51, 54, 57, 80, 84, 88, 92, 96, 125, 130, 135, 140, 145, 180, 186, 192, 198, 204, 245, 252, 259, 266, 273, 320, 328, 336, 344, 352, 405, 414, 423, 432, 441, 1000, 1020, 1040, 1060, 1080, 1210, 1232, 1254, 1276
Offset: 1

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-5 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(26)=floor(26/5^0)*floor(26/5^1)*floor(26/5^2)=26*5*1=130; a(34)=204 since 34=114(base-5) and so a(34)=114*11*1(base-5)=34*6*1=204.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    Table[Product[Floor[n/5^k],{k,0,Floor[Log[5,n]]}],{n,60}] (* Harvey P. Dale, Oct 16 2019 *)

Formula

Recurrence: a(n)=n*a(floor(n/5)); a(n*5^m)=n^m*5^(m(m+1)/2)*a(n).
a(k*5^m)=k^(m+1)*5^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_5(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_5(n)))/5^((1+floor(log_5(n)))*floor(log_5(n))/2); equality holds for n=k*5^m, 0=0. b(n) can also be written n^(1+floor(log_5(n)))/5^A000217(floor(log_5(n))).
Also: a(n)<=2^((1-log_5(2))/2)*n^((1+log_5(n))/2)=1.2181246...*5^A000217(log_5(n)), equality holds for n=2*5^m, m>=0.
a(n)>c*b(n), where c=0.438796837203638531... (see constant A132021).
Also: a(n)>c*(sqrt(2)/2^log_5(sqrt(2)))*n^((1+log_5(n))/2)=0.534509224...*5^A000217(log_5(n)).
lim inf a(n)/b(n)=0.438796837203638531..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_5(n))/2)=0.438796837203638531...*sqrt(2)/2^log_5(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_5(n))/2)=sqrt(2)/2^log_5(sqrt(2))=1.2181246..., for n-->oo.
lim inf a(n)/a(n+1)=0.438796837203638531... for n-->oo (see constant A132021).

A132030 a(n) = Product_{k=0..floor(log_6(n))} floor(n/6^k), n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 26, 28, 30, 32, 34, 54, 57, 60, 63, 66, 69, 96, 100, 104, 108, 112, 116, 150, 155, 160, 165, 170, 175, 216, 222, 228, 234, 240, 246, 294, 301, 308, 315, 322, 329, 384, 392, 400, 408, 416, 424, 486, 495, 504, 513, 522, 531, 600
Offset: 1

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base 6 as n = d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(52) = floor(52/6^0)*floor(52/6^1)*floor(52/6^2) = 52*8*1 = 416;
a(58) = 522 since 58 = 134_6 and so a(58) = 134_6 * 13_6 * 1_6 = 58*9*1 = 522.
		

Crossrefs

For formulas regarding a general parameter p (i.e., terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Maple
    f:= proc(n) option remember; n*procname(floor(n/6)) end proc:
    f(0):= 1:
    seq(f(i),i=1..100); # Robert Israel, Dec 20 2015
  • Mathematica
    Table[Product[Floor[n/6^k], {k, 0, Floor[Log[6, n]]}], {n, 1, 100}] (* G. C. Greubel, Dec 20 2015 *)

Formula

Recurrence: a(n)=n*a(floor(n/6)); a(n*6^m)=n^m*6^(m(m+1)/2)*a(n).
a(k*6^m) = k^(m+1)*6^(m(m+1)/2), for 0
Asymptotic behavior: a(n) = O(n^((1+log_6(n))/2)); this follows from the inequalities below.
a(n) <= b(n), where b(n) = n^(1+floor(log_6(n)))/6^((1+floor(log_6(n)))*floor(log_6(n))/2); equality holds for n=k*6^m, 0=0. b(n) can also be written n^(1+floor(log_6(n)))/6^A000217(floor(log_6(n))).
Also: a(n) <= 2^((1-log_6(2))/2)*n^((1+log_6(n))/2) = 1.236766885...*6^A000217(log_6(n)), equality holds for n=2*6^m and for n=3*6^m, m>=0 (consider 2^((1-log_6(2))/2)=3^((1-log_6(3))/2) since 6=2*3).
a(n) > c*b(n), where c = 0.45071262522603913... (see constant A132022).
Also: a(n) > c*(sqrt(2)/2^log_6(sqrt(2)))*n^((1+log_6(n))/2) = 0.557426449...*6^A000217(log_6(n)).
lim inf a(n)/b(n) = 0.45071262522603913..., for n-->oo.
lim sup a(n)/b(n) = 1, for n-->oo.
lim inf a(n)/n^((1+log_6(n))/2) = 0.45071262522603913...*sqrt(2)/2^log_6(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_6(n))/2) = sqrt(3)/3^log_6(sqrt(3))=1.236766885..., for n-->oo.
lim inf a(n)/a(n+1) = 0.45071262522603913... for n-->oo (see constant A132022).
G.f. g(x) satisfies g(x) = (x+2x^2+3x^3+4x^4+5x^5)*(1 + g(x^6)) + 6*(x^6+x^7+x^8+x^9+x^10+x^11)*g'(x^6). - Robert Israel, Dec 20 2015

A132032 Product{0<=k<=floor(log_8(n)), floor(n/8^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 34, 36, 38, 40, 42, 44, 46, 72, 75, 78, 81, 84, 87, 90, 93, 128, 132, 136, 140, 144, 148, 152, 156, 200, 205, 210, 215, 220, 225, 230, 235, 288, 294, 300, 306, 312, 318, 324, 330, 392, 399, 406, 413, 420, 427, 434
Offset: 1

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-8 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(70)=floor(70/8^0)*floor(70/8^1)*floor(70/8^2)=70*8*1=560;
For n=75, 75=113(base-8) and so a(75)=113*11*1(base-8)=75*9*1=675.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/8)); a(n*8^m)=n^m*8^(m(m+1)/2)*a(n).
a(k*8^m)=k^(m+1)*8^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_8(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_8(n)))/8^((1+floor(log_8(n)))*floor(log_8(n))/2); equality holds for n=k*8^m, 0=0. b(n) can also be written n^(1+floor(log_8(n)))/8^A000217(floor(log_8(n))).
Also: a(n)<=3^((1-log_8(3))/2)*n^((1+log_8(n))/2) = 1.295758534...*8^A000217(log_8(n)), equality holds for n=3*8^m, m>=0.
a(n)>c*b(n), where c = 0.46456888368647639098... (see constant A132024).
Also: a(n)>c*2^(1/3)*n^((1+log_8(n))/2)=0.4645688836...*1.25992105...*8^A000217(log_8(n)).
lim inf a(n)/b(n)=0.46456888368647639098..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_8(n))/2)=0.46456888368647639098...*2^(1/3), for n-->oo.
lim sup a(n)/n^((1+log_8(n))/2)=sqrt(3)/3^log_8(sqrt(3))=1.295758534..., for n-->oo.
lim inf a(n)/a(n+1)=0.46456888368647639098... for n-->oo (see constant A132024).

A054900 a(n) = Sum_{j >= 1} floor(n/16^j).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Author

Henry Bottomley, May 23 2000

Keywords

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

  • Magma
    m:=16;
    function a(n) // a = A054900, m = 16
      if n eq 0 then return 0;
      else return a(Floor(n/m)) + Floor(n/m);
      end if; end function;
    [a(n): n in [0..127]]; // G. C. Greubel, Apr 28 2023
    
  • Mathematica
    a[n_, m_]:= If[n==0, 0, a[Floor[n/m], m] +Floor[n/m]];
    Table[a[n, 16], {n,0,127}] (* G. C. Greubel, Apr 28 2023 *)
  • SageMath
    m=16 # a = A054900
    def a(n): return 0 if (n==0) else a(n//m) + (n//m)
    [a(n) for n in range(128)] # G. C. Greubel, Apr 28 2023

Formula

a(n) = (n - A053836(n))/15.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = a(floor(n/16)) + floor(n/16).
a(16*n) = a(n) + n.
a(n*16^m) = a(n) + n*(16^m - 1)/15.
a(k*16^m) = k*(16^m - 1)/15, for 0 <= k < 16, m>=0.
Asymptotic behavior:
a(n) = n/15 + O(log(n)).
a(n+1) - a(n) = O(log(n)) (this follows from the inequalities below).
a(n) <= (n-1)/15; equality holds for powers of 16.
a(n) >= (n-15)/15 - floor(log_16(n)); equality holds for n = 16^m - 1, m > 0.
Limits:
lim inf (n/15 - a(n)) = 1/15, for n --> oo.
lim sup (n/15 - log_16(n) - a(n)) = 0, for n --> oo.
lim sup (a(n+1) - a(n) - log_16(n)) = 0, for n --> oo.
Series:
G.f.: (1/(1-x))*Sum_{k > 0} x^(16^k)/(1-x^(16^k)). (End)
Previous Showing 31-40 of 45 results. Next