cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 261 results. Next

A384879 Numbers whose binary indices have all distinct lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 25, 26, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 49, 50, 52, 53, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86, 88, 97, 98, 100, 101, 104, 105, 106, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 813 are {1,3,4,6,9,10}, with maximal anti-runs ((1,3),(4,6,9),(10)), with lengths (2,3,1), so 813 is in the sequence.
The terms together with their binary expansions and binary indices begin:
    1:       1 ~ {1}
    2:      10 ~ {2}
    4:     100 ~ {3}
    5:     101 ~ {1,3}
    8:    1000 ~ {4}
    9:    1001 ~ {1,4}
   10:    1010 ~ {2,4}
   11:    1011 ~ {1,2,4}
   13:    1101 ~ {1,3,4}
   16:   10000 ~ {5}
   17:   10001 ~ {1,5}
   18:   10010 ~ {2,5}
   19:   10011 ~ {1,2,5}
   20:   10100 ~ {3,5}
   21:   10101 ~ {1,3,5}
   22:   10110 ~ {2,3,5}
   25:   11001 ~ {1,4,5}
   26:   11010 ~ {2,4,5}
		

Crossrefs

Subsets of this type are counted by A384177, for runs A384175 (complement A384176).
These are the indices of strict rows in A384877, see A384878, A245563, A245562, A246029.
A000120 counts binary indices.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384890 counts maximal anti-runs in binary indices, runs A069010.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],UnsameQ@@Length/@Split[bpe[#],#2!=#1+1&]&]

A384880 Number of strict integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 10, 12, 15, 18, 21, 25, 30, 34, 41, 46, 55, 63, 75, 85, 99, 114, 133, 152, 178, 201, 236, 269, 308, 352, 404, 460, 525, 594, 674, 763, 865, 974, 1098, 1236, 1385, 1558, 1745, 1952, 2181, 2435, 2712, 3026, 3363, 3740, 4151, 4612
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The strict partition y = (10,7,6,4,2,1) has maximal anti-runs ((10,7),(6,4,2),(1)), with lengths (2,3,1), so y is counted under a(30).
The a(1) = 1 through a(14) = 18 partitions (A-E = 10-14):
  1  2  3  4   5   6   7    8    9    A    B    C    D     E
           31  41  42  52   53   63   64   74   75   85    86
                   51  61   62   72   73   83   84   94    95
                       421  71   81   82   92   93   A3    A4
                            431  531  91   A1   A2   B2    B3
                            521  621  532  542  B1   C1    C2
                                      541  632  642  643   D1
                                      631  641  651  652   653
                                      721  731  732  742   743
                                           821  741  751   752
                                                831  832   761
                                                921  841   842
                                                     931   851
                                                     A21   932
                                                     6421  941
                                                           A31
                                                           B21
                                                           7421
		

Crossrefs

For subsets instead of strict partitions we have A384177.
For runs instead of anti-runs we have A384178.
This is the strict case of A384885.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length.
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,30}]

A304406 Number of partitions of n in which the sequence of the sum of the same summands is nonincreasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 9, 8, 11, 11, 20, 16, 20, 21, 32, 30, 41, 38, 50, 48, 62, 64, 89, 81, 97, 100, 123, 123, 151, 154, 187, 183, 221, 221, 279, 272, 312, 316, 377, 376, 446, 460, 531, 547, 628, 641, 754, 746, 841, 856, 990, 1007, 1145, 1167, 1325, 1346, 1519, 1567, 1776
Offset: 0

Views

Author

Seiichi Manyama, May 12 2018

Keywords

Comments

Number of integer partitions of n with weakly increasing run-sums. - Gus Wiseman, Oct 21 2022

Examples

			n |                      | Sequence of the sum of the same summands
--+----------------------+-----------------------------------------
1 | 1                    | 1
2 | 2                    | 2
  | 1+1                  | 2
3 | 3                    | 3
  | 1+1+1                | 3
4 | 4                    | 4
  | 2+2                  | 4
  | 2+1+1                | 2, 2
  | 1+1+1+1              | 4
5 | 5                    | 5
  | 2+1+1+1              | 3, 2
  | 1+1+1+1+1            | 5
6 | 6                    | 6
  | 3+3                  | 6
  | 3+1+1+1              | 3, 3
  | 2+2+2                | 6
  | 2+1+1+1+1            | 4, 2
  | 1+1+1+1+1+1          | 6
		

Crossrefs

Cf. A100882.
These partitions are ranked by A357861.
The complement is A357865, ranked by A357850.
The opposite version is A304405, ranked by A357875.
The strict version is A304430, ranked by A357864.
The strict opposite version is A304428, ranked by A357862.
Number of rows in A354584 summing to n that are weakly decreasing.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, distinct A353837.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],LessEqual@@Total/@Split[#]&]],{n,0,30}] (* Gus Wiseman, Oct 21 2022 *)

A325326 Heinz numbers of integer partitions covering an initial interval of positive integers with distinct multiplicities.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 18, 24, 32, 48, 54, 64, 72, 96, 108, 128, 144, 162, 192, 256, 288, 324, 360, 384, 432, 486, 512, 540, 576, 600, 648, 720, 768, 864, 972, 1024, 1152, 1200, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2048, 2160, 2250, 2304, 2400, 2592
Offset: 1

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A320348.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     8: {1,1,1}
    12: {1,1,2}
    16: {1,1,1,1}
    18: {1,2,2}
    24: {1,1,1,2}
    32: {1,1,1,1,1}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   192: {1,1,1,1,1,1,2}
   256: {1,1,1,1,1,1,1,1}
   288: {1,1,1,1,1,2,2}
   324: {1,1,2,2,2,2}
   360: {1,1,1,2,2,3}
   384: {1,1,1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=n==1||PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]];
    Select[Range[100],normQ[#]&&UnsameQ@@Last/@FactorInteger[#]&]

Formula

Intersection of normal numbers (A055932) and numbers with distinct prime exponents (A130091).

A353507 Product of multiplicities of the prime exponents (signature) of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2022

Keywords

Comments

Warning: If the prime multiplicities of n are a multiset y, this sequence gives the product of multiplicities in y, not the product of y.
Differs from A351946 at A351946(1260) = 4, a(1260) = 2.
Differs from A327500 at A327500(450) = 3, a(450) = 2.
We set a(1) = 0 so that the positions of first appearances are the primorials A002110.
Also the product of the prime metasignature of n (row n of A238747).

Examples

			The prime signature of 13860 is (2,2,1,1,1), with multiplicities (2,3), so a(13860) = 6.
		

Crossrefs

Positions of first appearances are A002110.
The prime indices themselves have product A003963, counted by A339095.
The prime signature itself has product A005361, counted by A266477.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A071625 counts distinct prime exponents (third omega).
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A323022 gives fourth omega.

Programs

  • Maple
    f:= proc(n) local M,s;
      M:= ifactors(n)[2][..,2];
      mul(numboccur(s,M),s=convert(M,set));
    end proc:
    f(1):= 0:
    map(f, [$1..100]); # Robert Israel, May 19 2023
  • Mathematica
    Table[If[n==1,0,Times@@Length/@Split[Sort[Last/@FactorInteger[n]]]],{n,100}]
    Join[{0},Table[Times@@(Length/@Split[FactorInteger[n][[;;,2]]]),{n,2,100}]] (* Harvey P. Dale, Oct 20 2024 *)
  • Python
    from math import prod
    from itertools import groupby
    from sympy import factorint
    def A353507(n): return 0 if n == 1 else prod(len(list(g)) for k, g in groupby(factorint(n).values())) # Chai Wah Wu, May 20 2022

Formula

A384178 Number of strict integer partitions of n with all distinct lengths of maximal runs (decreasing by 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 8, 10, 11, 13, 13, 16, 15, 19, 19, 23, 22, 26, 28, 31, 35, 39, 37, 47, 51, 52, 60, 65, 67, 78, 85, 86, 99, 108, 110, 127, 136, 138, 159, 170, 171, 196, 209, 213, 240, 257, 260, 292, 306, 313, 350, 371, 369, 417, 441
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2025

Keywords

Examples

			The strict partition y = (9,7,6,5,2,1) has maximal runs ((9),(7,6,5),(2,1)), with lengths (1,3,2), so y is counted under a(30).
The a(1) = 1 through a(14) = 8 strict partitions (A-E = 10-14):
  1  2  3   4  5   6    7    8    9    A     B     C     D     E
        21     32  321  43   431  54   532   65    543   76    653
                        421  521  432  541   542   651   643   743
                                  621  721   632   732   652   761
                                       4321  821   921   832   932
                                             5321  6321  A21   B21
                                                         5431  5432
                                                         7321  8321
		

Crossrefs

For subsets instead of strict partitions we have A384175, complement A384176.
For anti-runs instead of runs we have A384880.
This is the strict version of A384884.
For equal instead of distinct lengths we have A384886.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length.
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Length/@Split[#,#1==#2+1&]&]],{n,0,30}]

A384318 Number of strict integer partitions of n that are not maximally refined.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 4, 4, 5, 9, 10, 13, 15, 17, 26, 29, 36, 43, 49, 57, 74, 84, 101, 118, 136, 158, 181, 219, 248, 291
Offset: 0

Views

Author

Gus Wiseman, May 28 2025

Keywords

Comments

This is the number of strict integer partitions of n containing at least one sum of distinct non-parts.
Conjecture: Also the number of strict integer partitions of n such that it is possible in more than one way to choose a disjoint family of strict integer partitions, one of each part.

Examples

			For y = (5,4,2) we have 4 = 3+1 so y is counted under a(11).
On the other hand, no part of z = (6,4,1) is a subset-sum of the non-parts {2,3,5}, so z is not counted under a(11).
The a(3) = 1 through a(11) = 10 strict partitions:
  (3)  (4)  (5)  (6)    (7)    (8)    (9)    (10)     (11)
                 (4,2)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                 (5,1)  (5,2)  (6,2)  (6,3)  (7,3)    (7,4)
                        (6,1)  (7,1)  (7,2)  (8,2)    (8,3)
                                      (8,1)  (9,1)    (9,2)
                                             (5,3,2)  (10,1)
                                             (5,4,1)  (5,4,2)
                                             (6,3,1)  (6,3,2)
                                             (7,2,1)  (7,3,1)
                                                      (8,2,1)
		

Crossrefs

The strict complement is A179009, ranks A383707.
The non-strict version for at least one choice is A383708, for none A383710.
The non-strict version is A384317, ranks A384321, complement A384392, ranks A384320.
These partitions are ranked by A384322.
For subsets instead of partitions we have A384350, complement A326080.
Cf. A357982, A383706 (disjoint), A384319, A384323 (non-strict).

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,30}]

Formula

a(n) = A000009(n) - A179009(n).

A319149 Number of superperiodic integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 3, 5, 1, 7, 1, 7, 3, 3, 1, 13, 2, 3, 4, 9, 1, 13, 1, 11, 3, 3, 3, 23, 1, 3, 3, 20, 1, 17, 1, 16, 9, 3, 1, 38, 2, 9, 3, 23, 1, 25, 3, 36, 3, 3, 1, 71, 1, 3, 11, 49, 3, 31, 1, 52, 3, 19
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

An integer partition is superperiodic if either it consists of a single part equal to 1 or its parts have a common divisor > 1 and its multiset of multiplicities is itself superperiodic. For example, (8,8,6,6,4,4,4,4,2,2,2,2) has multiplicities (4,4,2,2) with multiplicities (2,2) with multiplicities (2) with multiplicities (1). The first four of these partitions are periodic and the last is (1), so (8,8,6,6,4,4,4,4,2,2,2,2) is superperiodic.

Examples

			The a(24) = 11 superperiodic partitions:
  (24)
  (12,12)
  (8,8,8)
  (9,9,3,3)
  (8,8,4,4)
  (6,6,6,6)
  (10,10,2,2)
  (6,6,6,2,2,2)
  (6,6,4,4,2,2)
  (4,4,4,4,4,4)
  (4,4,4,4,2,2,2,2)
  (3,3,3,3,3,3,3,3)
  (2,2,2,2,2,2,2,2,2,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    wotperQ[m_]:=Or[m=={1},And[GCD@@m>1,wotperQ[Sort[Length/@Split[Sort[m]]]]]];
    Table[Length[Select[IntegerPartitions[n],wotperQ]],{n,30}]

A325356 Number of integer partitions of n whose augmented differences are weakly increasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 6, 5, 5, 6, 8, 6, 10, 9, 8, 10, 13, 10, 15, 14, 13, 15, 21, 15, 19, 21, 20, 25, 25, 20, 31, 30, 30, 32, 35, 28, 40, 44, 36, 42, 50, 43, 54, 53, 49, 57, 67, 58, 68, 66, 66, 78, 84, 71, 86, 92, 82, 99, 109
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325394.

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (1111111)  (53)
                                     (111111)             (332)
                                                          (2222)
                                                          (11111111)
For example, the augmented differences of (6,6,5,3) are (1,2,3,3), which are weakly increasing, so (6,6,5,3) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A350952 The smallest number whose binary expansion has exactly n distinct runs.

Original entry on oeis.org

0, 1, 2, 11, 38, 311, 2254, 36079, 549790, 17593311, 549687102, 35179974591, 2225029922430, 284803830071167, 36240869367020798, 9277662557957324543, 2368116566113212692990, 1212475681849964898811391, 619877748107024946567312382, 634754814061593545284927880191
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2022

Keywords

Comments

Positions of first appearances in A297770 (with offset 0).
The binary expansion of terms for n > 0 starts with 1, then floor(n/2) 0's, then alternates runs of increasing numbers of 1's, and decreasing numbers of 0's; see Python code. Thus, for n even, terms have n*(n/2+1)/2 binary digits, and for n odd, ((n+1) + (n-1)*((n-1)/2+1))/2 binary digits. - Michael S. Branicky, Feb 14 2022

Examples

			The terms and their binary expansions begin:
       0:                   ()
       1:                    1
       2:                   10
      11:                 1011
      38:               100110
     311:            100110111
    2254:         100011001110
   36079:     1000110011101111
  549790: 10000110001110011110
For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The version for run-lengths instead of runs is A165933, for A165413.
Subset of A175413 (binary expansion has distinct runs), for lengths A044813.
The version for standard compositions is A351015.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
  • PARI
    a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<Andrew Howroyd, Feb 15 2022
  • Python
    def a(n): # returns term by construction
        if n == 0: return 0
        q, r = divmod(n, 2)
        if r == 0:
            s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1))
            assert len(s) == n*(n//2+1)//2
        else:
            s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2))
            assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2
        return int(s, 2)
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 14 2022
    

Extensions

a(9)-a(19) from Michael S. Branicky, Feb 14 2022
Previous Showing 81-90 of 261 results. Next