cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A372785 a(n) = tau(5*n) = A000005(5*n).

Original entry on oeis.org

2, 4, 4, 6, 3, 8, 4, 8, 6, 6, 4, 12, 4, 8, 6, 10, 4, 12, 4, 9, 8, 8, 4, 16, 4, 8, 8, 12, 4, 12, 4, 12, 8, 8, 6, 18, 4, 8, 8, 12, 4, 16, 4, 12, 9, 8, 4, 20, 6, 8, 8, 12, 4, 16, 6, 16, 8, 8, 4, 18, 4, 8, 12, 14, 6, 16, 4, 12, 8, 12, 4, 24, 4, 8, 8, 12, 8, 16, 4, 15, 10, 8, 4, 24, 6, 8, 8, 16, 4, 18, 8, 12, 8, 8, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 5*n], {n, 1, 150}]
  • PARI
    A372785(n) = numdiv(5*n); \\ Antti Karttunen, Jan 13 2025

Formula

Sum_{k=1..n} a(k) ~ (9*n*(log(n) + 2*gamma - 1) + n*log(5)) / 5, where gamma is the Euler-Mascheroni constant A001620.

Extensions

More terms from Antti Karttunen, Jan 13 2025

A372787 a(n) = tau(7*n) = A000005(7*n).

Original entry on oeis.org

2, 4, 4, 6, 4, 8, 3, 8, 6, 8, 4, 12, 4, 6, 8, 10, 4, 12, 4, 12, 6, 8, 4, 16, 6, 8, 8, 9, 4, 16, 4, 12, 8, 8, 6, 18, 4, 8, 8, 16, 4, 12, 4, 12, 12, 8, 4, 20, 4, 12, 8, 12, 4, 16, 8, 12, 8, 8, 4, 24, 4, 8, 9, 14, 8, 16, 4, 12, 8, 12, 4, 24, 4, 8, 12, 12, 6, 16, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 7*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (13*n*(log(n) + 2*gamma - 1) + n*log(7)) / 7, where gamma is the Euler-Mascheroni constant A001620.

A372788 a(n) = tau(8*n) = A000005(8*n).

Original entry on oeis.org

4, 5, 8, 6, 8, 10, 8, 7, 12, 10, 8, 12, 8, 10, 16, 8, 8, 15, 8, 12, 16, 10, 8, 14, 12, 10, 16, 12, 8, 20, 8, 9, 16, 10, 16, 18, 8, 10, 16, 14, 8, 20, 8, 12, 24, 10, 8, 16, 12, 15, 16, 12, 8, 20, 16, 14, 16, 10, 8, 24, 8, 10, 24, 10, 16, 20, 8, 12, 16, 20, 8, 21
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 8*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (20*n*(log(n) + 2*gamma - 1) + n*12*log(2)) / 8, where gamma is the Euler-Mascheroni constant A001620.

A372790 a(n) = tau(10*n) = A000005(10*n).

Original entry on oeis.org

4, 6, 8, 8, 6, 12, 8, 10, 12, 9, 8, 16, 8, 12, 12, 12, 8, 18, 8, 12, 16, 12, 8, 20, 8, 12, 16, 16, 8, 18, 8, 14, 16, 12, 12, 24, 8, 12, 16, 15, 8, 24, 8, 16, 18, 12, 8, 24, 12, 12, 16, 16, 8, 24, 12, 20, 16, 12, 8, 24, 8, 12, 24, 16, 12, 24, 8, 16, 16, 18, 8, 30
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 10*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (27*n*(log(n) + 2*gamma - 1) + n*(9*log(2) + 3*log(5))) / 10, where gamma is the Euler-Mascheroni constant A001620.

A372791 a(n) = tau(11*n) = A000005(11*n).

Original entry on oeis.org

2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 3, 12, 4, 8, 8, 10, 4, 12, 4, 12, 8, 6, 4, 16, 6, 8, 8, 12, 4, 16, 4, 12, 6, 8, 8, 18, 4, 8, 8, 16, 4, 16, 4, 9, 12, 8, 4, 20, 6, 12, 8, 12, 4, 16, 6, 16, 8, 8, 4, 24, 4, 8, 12, 14, 8, 12, 4, 12, 8, 16, 4, 24, 4, 8, 12, 12, 6, 16
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 11*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (21*n*(log(n) + 2*gamma - 1) + n*log(11)) / 11, where gamma is the Euler-Mascheroni constant A001620.

A129628 Inverse Moebius transform of A001511.

Original entry on oeis.org

1, 3, 2, 6, 2, 6, 2, 10, 3, 6, 2, 12, 2, 6, 4, 15, 2, 9, 2, 12, 4, 6, 2, 20, 3, 6, 4, 12, 2, 12, 2, 21, 4, 6, 4, 18, 2, 6, 4, 20, 2, 12, 2, 12, 6, 6, 2, 30, 3, 9, 4, 12, 2, 12, 4, 20, 4, 6, 2, 24, 2, 6, 6, 28, 4, 12, 2, 12, 4, 12, 2, 30, 2, 6, 6, 12, 4, 12, 2, 30, 5, 6, 2, 24, 4, 6, 4, 20
Offset: 1

Views

Author

Ralf Stephan, May 31 2007

Keywords

Comments

Dirichlet convolution of A000005 with A209229. - Ridouane Oudra, Jul 25 2025

Crossrefs

Programs

  • Maple
    seq(add(padic[ordp](2*d, 2), d in numtheory[divisors](n)), n=1..100); # Ridouane Oudra, Sep 30 2024
  • Mathematica
    f[p_, e_] := If[p==2, (e+1)*(e+2)/2, e+1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, 1 + valuation(d, 2))} \\ Andrew Howroyd, Aug 04 2018

Formula

a(2n) = a(n) + A000005(2n), a(2n+1) = A000005(2n+1).
Dirichlet g.f.: zeta(s)^2 * 2^s/(2^s-1). - Ralf Stephan, Jun 17 2007, corrected by Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} A001511(d). - Andrew Howroyd, Aug 04 2018
Sum_{k=1..n} a(k) ~ 2*n * (2*gamma - 1 + log(n/2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = e+1 for p > 2. - Amiram Eldar, Sep 30 2020
From Ridouane Oudra, Sep 30 2024: (Start)
a(n) = Sum_{i=0..A007814(n)} tau(n/2^i).
a(n) = Sum_{d|2*n} A007814(d).
a(n) = (1/2)*A001511(n)*A099777(n).
a(n) = (1/2)*(A001511(n) + 1)*A000005(n).
a(n) = A115364(n)*A001227(n). (End)

A263084 a(n) = A263086(n) - A263085(n).

Original entry on oeis.org

1, 2, 4, 6, 7, 11, 13, 14, 18, 22, 22, 28, 29, 31, 37, 41, 41, 46, 48, 52, 58, 62, 60, 68, 71, 73, 79, 83, 83, 93, 95, 96, 100, 104, 108, 118, 120, 120, 124, 132, 131, 141, 141, 145, 155, 157, 157, 165, 169, 172, 178, 184, 180, 190, 196, 202, 208, 210, 208, 220, 221, 223, 231, 237, 241, 251, 251, 251, 257, 267, 267, 278
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2015

Keywords

Comments

See also the Plot2-link at A263086.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Subtract @@ DivisorSigma[0, 2*n - {0, 1}], {n, 1, 100}]] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    list(lim) = {my(s = 0); for(n = 1, lim, s += numdiv(2*n) - numdiv(2*n-1); print1(s, ", "));} \\ Amiram Eldar, Jan 25 2025
  • Scheme
    (define (A263084 n) (- (A263086 n) (A263085 n)))
    

Formula

a(n) = A263086(n) - A263085(n).
a(n) ~ n * (log(n) + 2*gamma - log(2) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 25 2025

A354452 Number of middle divisors of 2*n.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 1, 0, 2, 2, 0, 0, 2, 1, 0, 2, 2, 0, 2, 0, 1, 2, 0, 2, 3, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 1, 1, 0, 2, 0, 2, 2, 2, 0, 0, 0, 4, 0, 0, 2, 1, 2, 2, 0, 0, 0, 2, 0, 3, 0, 0, 2, 0, 2, 2, 0, 2, 1, 0, 0, 2, 2, 0, 0, 2, 0, 4, 2, 0, 0, 0, 2, 2, 0, 1, 2, 1, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Omar E. Pol, May 30 2022

Keywords

Comments

a(n) is the number of middle divisors of the n-th even number.
a(n) is also the width of the terrace at the level 2*n starting from the top in the main diagonal of the stepped pyramid described in A245092.
a(n) is also the number of central subparts in the symmetric representation of sigma(2n). For more information about the subparts see A279387.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[2*n, 1 &, n <= #^2 < 4*n &]; Array[a, 100] (* Amiram Eldar, Jun 01 2022 *)
  • PARI
    A354452(n) = { n <<= 1; sumdiv(n, d, my(d2 = d^2); (n / 2 < d2 && d2 <= n << 1)); }; \\ Antti Karttunen, Jan 17 2025, after program in A067742 by M. F. Hasler, May 12 2008

Formula

a(n) = A067742(2n).
a(n) = A067742(A005843(n)).

A363132 Number of integer partitions of 2n such that 2*(minimum) = (mean).

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0

Views

Author

Gus Wiseman, May 23 2023

Keywords

Comments

Equivalently, n = (length)*(minimum).

Examples

			The a(2) = 1 through a(7) = 14 partitions:
  (31)  (321)  (62)    (32221)  (93)      (3222221)
        (411)  (3221)  (33211)  (552)     (3322211)
               (3311)  (42211)  (642)     (3332111)
               (4211)  (43111)  (732)     (4222211)
               (5111)  (52111)  (822)     (4322111)
                       (61111)  (322221)  (4331111)
                                (332211)  (4421111)
                                (333111)  (5222111)
                                (422211)  (5321111)
                                (432111)  (5411111)
                                (441111)  (6221111)
                                (522111)  (6311111)
                                (531111)  (7211111)
                                (621111)  (8111111)
                                (711111)
		

Crossrefs

Removing the factor 2 gives A099777.
Taking maximum instead of mean and including odd indices gives A118096.
For length instead of mean and including odd indices we have A237757.
For (maximum) = 2*(mean) see A361851, A361852, A361853, A361854, A361855.
For median instead of mean we have A361861.
These partitions have ranks A363133.
For maximum instead of minimum we have A363218.
For median instead of minimum we have A363224.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(46) from Chai Wah Wu, Sep 21 2023

A372674 a(n) = Sum_{j=1..n} Sum_{k=1..n} tau(j*k).

Original entry on oeis.org

1, 8, 23, 54, 89, 162, 221, 326, 439, 596, 707, 964, 1107, 1352, 1645, 1976, 2179, 2630, 2865, 3390, 3859, 4316, 4615, 5406, 5883, 6444, 7059, 7892, 8299, 9430, 9877, 10794, 11635, 12424, 13361, 14852, 15415, 16324, 17349, 18952, 19587, 21342, 22017, 23486, 25177
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2024

Keywords

Comments

For m>=1, Sum_{j=1..n} tau(m*j) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{j=1..n} tau(p*j) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}]
    s = 1; Join[{1}, Table[s += DivisorSigma[0, n^2] + 2*Sum[DivisorSigma[0, j*n], {j, 1, n - 1}], {n, 2, 50}]]
Previous Showing 11-20 of 31 results. Next