cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A289111 a(n) = (2^49 - 2)*n/3 + 444813635231.

Original entry on oeis.org

444813635231, 188094798109001, 375744782582771, 563394767056541, 751044751530311, 938694736004081, 1126344720477851, 1313994704951621, 1501644689425391, 1689294673899161, 1876944658372931, 2064594642846701, 2252244627320471, 2439894611794241
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jun 24 2017

Keywords

Comments

For all n, the numbers a(n) and a(n) + 2 form a pair of consecutive Riesel numbers.
Conjecture: a(0) + 1 = 444813635232 is the smallest nonnegative even number m such that for all k >= 1 the absolute values of the numbers m - 2^k + 1 and m - 2^k - 1 are composite.

Crossrefs

Cf. A101036.

Programs

  • GAP
    List([0..15],n->(2^49-2)*n/3+444813635231); # Muniru A Asiru, Oct 01 2018
  • Magma
    [(2^49-2)*n/3+444813635231: n in [0..13]];
    
  • Maple
    seq(coeff(series((444813635231+187205170838539*x)/(1-x)^2,x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 01 2018
  • Mathematica
    Table[(2^49 - 2) n/3 + 444813635231, {n, 0, 13}] (* or *)
    CoefficientList[Series[(444813635231 + 187205170838539 x)/(1 - x)^2, {x, 0, 13}], x]
  • PARI
    a(n)=(2^49-2)*n/3+444813635231
    
  • PARI
    Vec(7*(63544805033 + 26743595834077*x) / (1 - x)^2 + O(x^15)) \\ Colin Barker, Jun 25 2017
    

Formula

a(n) = (2^49 - 2)*n/3 + 444813635231.
G.f.: (444813635231 + 187205170838539*x)/(1 - x)^2.
From Colin Barker, Jun 25 2017: (Start)
a(n) = 7*(63544805033 + 26807140639110*n).
a(n) = 2*a(n-1) - a(n-2) for n>1.
(End)

A369378 a(n) is the smallest k such that 2^(2^n+1)-1 + 2^k is prime, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 4, 16, 1968, 64, 64
Offset: 0

Views

Author

Thomas Ordowski, Jan 22 2024

Keywords

Comments

Conjecture: if n > 0, then 2^(2^n+1)-1 + 2^k is not prime for every k < 2^n.
This conjecture seems provable, because it is not too strong for large n > 6.
If, for n > 6, a(n) does not exist, then 2^(2^n+1)-1 + 2^k is composite for every natural k. Thus, by the dual Sierpinski conjecture, for n > 6, 2^(2^n+1)-1 is a Sierpinski number, i.e., if n > 6, then (2^(2^n+1)-1)2^k+1 is composite for every natural k. For example, the Mersenne number 2^(2^8+1)-1 may be a dual Sierpinski number.
Similarly, if for n > 5, |2^(2^n-1)-1 - 2^m| is not prime for every m > 0, then by the dual Riesel conjecture, 2^(2^n-1)-1 is a Riesel number, i.e., if n > 5, then (2^(2^n-1)-1)2^m-1 is composite for every integer m > 0. For example, the double Mersenne prime 2^(2^7-1)-1 may be a dual Riesel number. By Crocker's theorem; if n > 2, then positive 2^(2^n-1)-1 - 2^m are composite. Let b(n) be the smallest k such that 2^k - (2^(2^n-1)-1) is prime, for n >= 0: {1, 2, 39, 47, 447, 191, ?}.
a(7) > 65000, a(8) thru a(12) > 25000, if they exist. - Robert G. Wilson v, Jan 22 2024

Examples

			a(1) = 2 since for 2^(2^1+1)-1 = 7 we have 7 + 2^1 = 9 and 7 + 2^2 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{m = 2^(2^n + 1) - 1, k = 1}, While[! PrimeQ[m + 2^k], k++]; k]; Array[a, 7, 0] (* Amiram Eldar, Jan 22 2024 *)

A263865 Odd k for which abs(2^m - k) is nonprime for all m < k.

Original entry on oeis.org

1, 337, 2293, 4327, 6247, 6269, 12749, 13603, 14023, 14347, 14407, 15997, 21673, 25229, 31511, 36971, 47107, 48703, 48959, 50171, 56351, 59399, 63389, 69427, 83381, 84491, 85061, 104549, 107857, 109649, 118567
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 28 2015

Keywords

Comments

Related to the problem in A076337.

Crossrefs

Programs

  • PARI
    forstep(k=1, 6269, 2, c=m=0; while(m
    				
  • Python
    from gmpy2 import is_prime
    def ok(k): return k&1 and all(not is_prime(abs((1<Michael S. Branicky, May 22 2025

Extensions

a(20)-a(31) from Michael S. Branicky, May 22 2025

A368560 a(1) = 78557 (the first Sierpinski number); thereafter a(n+1) = Od(3*5*7*13*19*37*73 - a(n)), where Od(m) is the odd part of m.

Original entry on oeis.org

78557, 34985939, 2191531, 8482363, 7696009, 31177213, 19436611, 790841, 34629797, 17710319, 13085029, 28482703, 10391933, 29829251, 78557, 34985939, 2191531, 8482363, 7696009, 31177213, 19436611, 790841, 34629797, 17710319, 13085029, 28482703, 10391933, 29829251
Offset: 1

Views

Author

Thomas Ordowski, Dec 30 2023

Keywords

Comments

Generally, if k is a Sierpinski number (or is a Riesel number) and P(k) > k is the product of all elements from the covering set for k*2^n + 1 (or for k*2^n - 1), then Od(P(k) - k) is a Riesel number (or is a Sierpinski number) with the same covering set, where Od(m) is the odd part of m.
Thus a(2n-1) is a Sierpinski number and a(2n) is a Riesel number.
This sequence is purely periodic with period P = 14.

Examples

			a(1) = 78557 is a Sierpinski number and a(2) = (3*5*7*13*19*37*73 - 78557)/2 = 34985939 is a Riesel number with the same covering set {3, 5, 7, 13, 19, 37, 73}.
		

Crossrefs

Programs

  • Mathematica
    od[n_] := n/2^IntegerExponent[n, 2]; a[1] = 78557; a[n_] := a[n] = od[70050435 - a[n-1]]; Array[a, 42] (* Amiram Eldar, Dec 30 2023 *)

Formula

a(n + 14) = a(n).
Previous Showing 41-44 of 44 results.