A289111 a(n) = (2^49 - 2)*n/3 + 444813635231.
444813635231, 188094798109001, 375744782582771, 563394767056541, 751044751530311, 938694736004081, 1126344720477851, 1313994704951621, 1501644689425391, 1689294673899161, 1876944658372931, 2064594642846701, 2252244627320471, 2439894611794241
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Carlos Rivera, Collection 20th - 019
- Wikipedia, Riesel number
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A101036.
Programs
-
GAP
List([0..15],n->(2^49-2)*n/3+444813635231); # Muniru A Asiru, Oct 01 2018
-
Magma
[(2^49-2)*n/3+444813635231: n in [0..13]];
-
Maple
seq(coeff(series((444813635231+187205170838539*x)/(1-x)^2,x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 01 2018
-
Mathematica
Table[(2^49 - 2) n/3 + 444813635231, {n, 0, 13}] (* or *) CoefficientList[Series[(444813635231 + 187205170838539 x)/(1 - x)^2, {x, 0, 13}], x]
-
PARI
a(n)=(2^49-2)*n/3+444813635231
-
PARI
Vec(7*(63544805033 + 26743595834077*x) / (1 - x)^2 + O(x^15)) \\ Colin Barker, Jun 25 2017
Formula
a(n) = (2^49 - 2)*n/3 + 444813635231.
G.f.: (444813635231 + 187205170838539*x)/(1 - x)^2.
From Colin Barker, Jun 25 2017: (Start)
a(n) = 7*(63544805033 + 26807140639110*n).
a(n) = 2*a(n-1) - a(n-2) for n>1.
(End)
Comments