cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.

Original entry on oeis.org

3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Examples

			37.616649962733362975777673671302714340355289873...
		

Crossrefs

Cf. A377804 (surface area), A377806 (circumradius), A377807 (midradius).
Cf. A102769 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]

Formula

Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.

A385802 Decimal expansion of the volume of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 2, 6, 6, 1, 2, 4, 6, 2, 5, 4, 1, 6, 2, 8, 1, 1, 1, 0, 0, 8, 3, 4, 8, 5, 0, 5, 9, 3, 4, 0, 6, 7, 3, 0, 9, 8, 3, 0, 7, 8, 0, 0, 3, 2, 5, 9, 5, 4, 4, 6, 3, 8, 2, 7, 8, 2, 9, 9, 7, 8, 2, 8, 3, 2, 5, 2, 6, 2, 1, 6, 9, 7, 0, 0, 2, 6, 4, 2, 3, 1, 5, 5, 9, 3, 0, 9, 3, 0, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the volume of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			8.266124625416281110083485059340673098307800325954...
		

Crossrefs

Cf. A385803 (surface area).

Programs

  • Mathematica
    First[RealDigits[(25 + 11*Sqrt[5])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "Volume"], 10, 100]]

Formula

Equals (25 + 11*sqrt(5))/6 = (25 + 11*A002163)/6.
Equals A102769 + 2*A179552.
Equals the largest root of 9*x^2 - 75*x + 5.

A385804 Decimal expansion of the volume of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 5, 6, 7, 6, 2, 7, 4, 5, 7, 8, 1, 2, 1, 0, 5, 6, 8, 0, 7, 6, 7, 2, 0, 0, 6, 2, 8, 8, 7, 1, 1, 4, 2, 9, 4, 1, 4, 5, 1, 1, 5, 9, 4, 2, 4, 2, 7, 1, 6, 1, 0, 7, 3, 3, 0, 0, 7, 9, 3, 2, 3, 3, 5, 1, 4, 4, 7, 2, 6, 7, 3, 5, 5, 7, 0, 8, 8, 4, 1, 8, 6, 4, 0, 2, 0, 2, 7, 0, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			8.56762745781210568076720062887114294145115942427...
		

Crossrefs

Cf. A385805 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/8*(7 + Sqrt[45]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "Volume"], 10, 100]]

Formula

Equals (5/8)*(7 + 3*sqrt(5)) = (5/8)*(7 + A010499).
Equals A102769 + 3*A179552.
Equals the largest root of 16*x^2 - 140*x + 25.
Equals A377697^2. - Hugo Pfoertner, Jul 13 2025

A363438 Decimal expansion of the volume of the regular dodecahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

2, 7, 8, 5, 1, 6, 3, 8, 6, 3, 1, 2, 2, 6, 2, 2, 9, 6, 7, 2, 9, 2, 5, 5, 4, 9, 1, 2, 7, 3, 5, 9, 4, 6, 9, 8, 7, 8, 9, 9, 3, 2, 1, 7, 7, 2, 0, 7, 6, 3, 3, 1, 9, 9, 2, 6, 3, 7, 0, 2, 4, 1, 4, 7, 4, 1, 6, 2, 5, 5, 1, 5, 0, 3, 2, 9, 1, 0, 6, 4, 9, 3, 0, 9, 4, 4, 4, 8, 5, 1, 3, 4, 7, 6, 6, 4, 8, 0, 8, 8, 0, 6, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			2.78516386312262296729255491273594698789932177207633...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron).
Cf. A001622.
Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798, A341906.

Programs

  • Mathematica
    RealDigits[(2*(5 + Sqrt[5]))/(3*Sqrt[3]), 10, 120][[1]]
  • PARI
    2*sqrt(5+sqrt(5))/sqrt(27) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals 2*sqrt(5+sqrt(5))/(3*sqrt(3)).
Equals 4*(phi+2)/(3*sqrt(3)), where phi is the golden ratio (A001622).
Equals A102769 / A179296 ^ 3.

A374771 Decimal expansion of the volume of the sphere inscribed in a regular dodecahedron with unit edge.

Original entry on oeis.org

5, 7, 8, 3, 3, 3, 5, 9, 5, 0, 3, 9, 6, 5, 7, 4, 1, 7, 8, 4, 2, 1, 8, 2, 3, 2, 1, 0, 4, 1, 0, 3, 3, 6, 7, 5, 5, 5, 3, 7, 2, 2, 3, 2, 4, 6, 2, 6, 0, 8, 2, 6, 1, 9, 4, 0, 4, 0, 5, 0, 7, 8, 2, 5, 5, 1, 7, 8, 7, 3, 1, 5, 3, 0, 0, 1, 0, 1, 6, 8, 2, 9, 8, 0, 7, 2, 3, 3, 6, 0
Offset: 1

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Examples

			5.78333595039657417842182321041033675553722324626...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi*Sqrt[1525 + 682*Sqrt[5]]/30, 10, 100]]

Formula

Equals (4/3)*Pi*A237603^3 = 10*A019699*A237603^3.
Equals (1/30)*Pi*sqrt(1525 + 682*sqrt(5)).
Equals (Pi/6)*A001622^6/((3 - A001622)^(3/2)).

A385695 Decimal expansion of the volume of an augmented dodecahedron with unit edge.

Original entry on oeis.org

7, 9, 6, 4, 6, 2, 1, 7, 9, 3, 0, 2, 0, 4, 5, 6, 5, 3, 9, 3, 9, 9, 7, 6, 9, 4, 8, 9, 8, 1, 0, 2, 0, 3, 2, 5, 5, 1, 6, 4, 4, 4, 1, 2, 2, 7, 6, 3, 7, 3, 1, 6, 9, 2, 2, 6, 5, 2, 0, 2, 4, 2, 3, 1, 3, 6, 0, 5, 1, 6, 6, 5, 8, 4, 3, 4, 4, 0, 0, 4, 4, 4, 7, 8, 4, 1, 5, 9, 1, 4
Offset: 1

Views

Author

Paolo Xausa, Jul 08 2025

Keywords

Comments

The augmented dodecahedron is Johnson solid J_58.

Examples

			7.9646217930204565393997694898102032551644412276373...
		

Crossrefs

Cf. A385696 (surface area).

Programs

  • Mathematica
    First[RealDigits[(95 + 43*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J58", "Volume"], 10, 100]]

Formula

Equals (95 + 43*sqrt(5))/24 = (95 + 43*A002163)/24.
Equals A102769 + A179552.
Equals the largest root of 144*x^2 - 1140*x - 55.

A341906 Decimal expansion of the moment of inertia of a solid regular dodecahedron with a unit mass and a unit edge length.

Original entry on oeis.org

6, 0, 7, 3, 5, 5, 5, 0, 3, 7, 4, 1, 6, 3, 9, 3, 2, 7, 1, 9, 9, 8, 5, 9, 2, 4, 3, 6, 0, 1, 7, 3, 2, 5, 7, 7, 2, 7, 3, 9, 4, 7, 0, 5, 3, 4, 1, 6, 1, 6, 5, 0, 1, 0, 8, 2, 1, 8, 8, 3, 3, 0, 8, 5, 7, 0, 0, 3, 4, 3, 8, 6, 9, 9, 9, 5, 8, 1, 3, 0, 3, 5, 9, 0, 5, 4, 0
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Comments

The moments of inertia of the five Platonic solids were apparently first calculated by the Canadian physicist John Satterly (1879-1963) in 1957.
The moment of inertia of a solid regular dodecahedron with a uniform mass density distribution, mass M, and edge length L is I = c*M*L^2, where c is this constant.
The corresponding values of c for the other Platonic solids are:
Tetrahedron: 1/20 (= A020761/10).
Octahedron: 1/10 (= A000007).
Cube: 1/6 (= A020793).
Icosahedron: (3 + sqrt(5))/20 (= A104457/10).

Examples

			0.60735550374163932719985924360173257727394705341616...
		

Crossrefs

Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798.

Programs

  • Mathematica
    RealDigits[(95 + 39*Sqrt[5])/300, 10, 100][[1]]

Formula

Equals (95 + 39*sqrt(5))/300.
Equals (28 + 39*phi)/150, where phi is the golden ratio (A001622).

A364896 Decimal expansion of the 4-volume of the unit regular 120-cell.

Original entry on oeis.org

7, 8, 7, 8, 5, 6, 9, 8, 1, 0, 3, 4, 3, 3, 7, 9, 3, 3, 9, 9, 2, 1, 1, 6, 8, 5, 9, 1, 1, 3, 8, 8, 7, 4, 3, 6, 4, 9, 6, 4, 0, 8, 9, 8, 5, 8, 8, 1, 5, 3, 1, 4, 0, 8, 9, 0, 2, 7, 4, 5, 6, 3, 9, 5, 0, 3, 6, 0, 4, 3, 1, 3, 1, 4, 3, 6, 6, 3, 1, 1, 3, 5, 2, 1, 7, 9, 0, 5, 3, 9, 4, 7, 6, 7, 6, 0, 3, 7
Offset: 3

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (1575+705*sqrt(5))/4.

Examples

			Equals 787.85698103433793399211...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), this sequence (120-cell), A364897 (600-cell).
Cf. A102769 (decimal expansion of the volume of the unit regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(1575 + 705*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (1575+705*sqrt(5))/4
Previous Showing 11-18 of 18 results.