cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A349011 G.f. A(x) satisfies: A(x) = (1 - x * A(-x)) / (1 - 2 * x * A(x)).

Original entry on oeis.org

1, 1, 5, 17, 105, 433, 2925, 13185, 93425, 443009, 3233205, 15840209, 117950745, 591187953, 4466545245, 22766535297, 173906505825, 897941153665, 6918379345125, 36089242700049, 279988660639305, 1472715584804529, 11490841104036045, 60857608450349313, 477104721264920145
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Maple
    A349011 := proc(n)
        option remember ;
        if n = 0 then
            1;
        else
            (-1)^n*procname(n-1)+2*add(procname(k)*procname(n-k-1),k=0..n-1) ;
        end if;
    end proc:
    seq(A349011(n),n=0..40) ; # R. J. Mathar, Aug 19 2022
  • Mathematica
    nmax = 24; A[] = 0; Do[A[x] = (1 - x A[-x])/(1 - 2 x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = (-1)^n a[n - 1] + 2 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 1; a(n) = (-1)^n * a(n-1) + 2 * Sum_{k=0..n-1} a(k) * a(n-k-1).

A235608 Triangle read by rows: a non-Riordan array serving as a counterexample to a conjecture about Riordan arrays.

Original entry on oeis.org

1, 2, 1, 10, 5, 1, 62, 31, 7, 1, 430, 215, 51, 10, 1, 3194, 1597, 389, 87, 12, 1, 24850, 12425, 3077, 740, 117, 15, 1, 199910, 99955, 25035, 6305, 1076, 168, 17, 1, 1649350, 824675, 208255, 54150, 9705, 1700, 208, 20, 1, 13879538, 6939769, 1763473, 469399, 87048
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2014

Keywords

Comments

See Barry (2013), Example 3, for precise definition.
T(n,1) = T(n,0)/2 for n > 0. - Philippe Deléham, Jan 31 2014

Examples

			Triangle begins:
         1;
         2,       1;
        10,       5,       1;
        62,      31,       7,      1;
       430,     215,      51,     10,     1;
      3194,    1597,     389,     87,    12,    1;
     24850,   12425,    3077,    740,   117,    15,    1;
    199910,   99955,   25035,   6305,  1076,   168,   17,   1;
   1649350,  824675,  208255,  54150,  9705,  1700,  208,  20,  1;
  13879538, 6939769, 1763473, 469399, 87048, 16449, 2248, 274, 22, 1;
... - Extended by _Philippe Deléham_, Jan 31 2014
		

Crossrefs

The leading column is A107841.

Programs

  • Mathematica
    f[x_] := (1+x-Sqrt[1-10*x+x^2])/(6*x); g[x_] := (1-x-Sqrt[1-10*x+x^2])/(4*x); t[n_, k_] := SeriesCoefficient[f[x]^Floor[(k+2)/2]*g[x]^Floor[(k+1)/2], {x, 0, n}]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 31 2014, after Philippe Deléham *)

Formula

G.f. for the column k (with leading zero omitted): f(x)^(floor((k+2)/2))*g(x)^(floor((k+1)/2)) with f(x) = (1+x-sqrt(1-10*x+x^2))/(6*x) and g(x) = (1-x-sqrt(1-10*x+x^2))/(4*x). - Philippe Deléham, Jan 31 2014

Extensions

More terms from Philippe Deléham, Jan 31 2014

A239488 Expansion of 1/x-4/(-sqrt(x^2-10*x+1)-x+1)-3.

Original entry on oeis.org

6, 30, 186, 1290, 9582, 74550, 599730, 4948050, 41638614, 356007630, 3083837802, 27006251610, 238704231102, 2126733078630, 19079571337314, 172209370246050, 1562686251141030, 14248144422407550, 130467052593799962
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 20 2014

Keywords

Crossrefs

Cf. A103210.

Programs

  • Maple
    ogf := 1/x-4/(-sqrt(x^2-10*x+1)-x+1)-3;
    series(ogf, x=0, 20): seq(coeff(%,x,n), n=0..19); # Peter Luschny, Mar 21 2014
  • Maxima
    a(n):=sum(2^i*binomial(n,n-i+1)*binomial(n+i-1,n-1),i,0,n+1)/n;

Formula

a(n) = sum(i = 0..n+1, 2^i*binomial(n,n-i+1)*binomial(n+i-1,n-1))/n.
a(n) = T(2*n,n-1)/n where T(n,k) is triangle A116412.
D-finite with recurrence: (n+1)*a(n) +5*(-2*n+1)*a(n-1) +(n-2)*a(n-2)=0. a(n) = 2*A103210(n). - R. J. Mathar, May 23 2014
Previous Showing 21-23 of 23 results.