cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A120257 Triangle of Hankel transforms of certain binomial sums.

Original entry on oeis.org

1, 2, -1, 3, -6, -1, 4, -20, -20, 1, 5, -50, -175, 70, 1, 6, -105, -980, 1764, 252, -1, 7, -196, -4116, 24696, 19404, -924, -1, 8, -336, -14112, 232848, 731808, -226512, -3432, 1, 9, -540, -41580, 1646568, 16818516, -24293412, -2760615, 12870, 1, 10, -825, -108900, 9343620, 267227532, -1447482465
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Comments

Row k is the Hankel transform of Sum_{j=0..n} binomial(k+j, j). Absolute value is reversal of A103905. Diagonal and subdiagonals are essentially signed versions of the central coefficients of certain generalized Pascal-Narayana triangles (A007318, A001263, A056939, A056940, A056941).

Examples

			Triangle begins
  1;
  2,   -1;
  3,   -6,     -1;
  4,  -20,    -20,      1;
  5,  -50,   -175,     70,      1;
  6, -105,   -980,   1764,    252,      -1;
  7, -196,  -4116,  24696,  19404,    -924,    -1;
  8, -336, -14112, 232848, 731808, -226512, -3432, 1;
		

Crossrefs

Cf. A120258.

Programs

  • PARI
    T(n, k) = (-1)^((k+1)\2) * prod(j=0, n-k-1, binomial(2*k+2+j, k+1)/binomial(k+1+j, j)); \\ Michel Marcus, Jan 13 2022

Formula

T(n, k) = (cos(Pi*k/2) - sin(Pi*k/2)) * Product_{j=0..n-k-1} C(2k+2+j, k+1)/C(k+1+j, j).

A133815 Square array of Hankel transforms of binomial(n+k,floor((n+k)/2)), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, -1, 2, 1, 1, -1, 3, 3, 1, 1, 1, 4, -6, 6, 1, 1, 1, 5, -10, 20, 10, 1, 1, -1, 6, 15, 50, -50, 20, 1, 1, -1, 7, 21, 105, -175, 175, 35, 1, 1, 1, 8, -28, 196, 490, 980, -490, 70, 1, 1, 1, 9, -36, 336, 1176, 4116, -4116, 1764, 126, 1
Offset: 0

Views

Author

Paul Barry, Sep 24 2007

Keywords

Comments

T(n+1,k) is the Hankel transform of binomial(n+k, floor((n+k)/2)).
Even-indexed columns count tilings of hexagons: A002415 (<2,n,2>), A047819 (<3,n,3>), A047835 (<4,n,4>), etc.

Examples

			Array begins
  1,    1,    1,    1,    1,    1, ...
  1,    1,    2,    3,    6,   10, ...
  1,   -1,    3,   -6,   20,  -50, ...
  1,   -1,    4,  -10,   50, -175, ...
  1,    1,    5,   15,  105,  490, ...
  1,    1,    6,   21,  196, 1176, ...
As a number triangle, T(n-k,k) gives
  1;
  1,   1;
  1,   1,   1;
  1,  -1,   2,   1;
  1,  -1,   3,   3,   1;
  1,   1,   4,  -6,   6,   1;
  1,   1,   5, -10,  20,  10,   1;
  1,  -1,   6,  15,  50, -50,  20,   1;
		

Crossrefs

Programs

  • Magma
    F:= Floor;
    function t(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return (-1)^F(n/2);
      elif (k mod 2) eq 0 then return (&*[ Binomial(n+F(k/2)+j, F(k/2))/Binomial(F(k/2)+j, F(k/2)) : j in [0..F((k-2)/2)] ]);
      else return (-1)^F(n/2)*(&*[ Binomial(n+F((k+1)/2)+j, F((k+1)/2))/Binomial(F((k+1)/2)+j, F((k+1)/2)) : j in [0..F((k-3)/2)] ]);
      end if;
    end function;
    // [[t(n,k): k in [0..10]]: n in [0..10]];
    A133815:= func< n,k | t(n-k, k) >;
    [A133815(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 16 2023
    
  • Mathematica
    T[ n_, m_] := With[{k = Quotient[m + 1, 2]}, (-1)^(Quotient[n, 2] m) Product[ Binomial[n + k + j, k] / Binomial[k + j, k], {j, 0, k - 1 - Mod[m, 2]}]];
    (* Michael Somos, Apr 03 2021 *)
  • PARI
    alias(C, binomial);
    T(n,k) = if (k % 2 == 0, prod(j=0, (k-2)/2, C(n+k/2+j,k/2)/C(k/2+j,k/2)), (cos(Pi*n/2)+sin(Pi*n/2))*prod(j=0, (k-3)/2, C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)));
    tabl(nn) = matrix(nn, nn, n, k, round(T(n-1, k-1))); \\ Michel Marcus, Dec 10 2016
    
  • PARI
    T(n, m) = my(k = (m+1)\2); (-1)^(n\2*m) * prod(j=0, k-1-m%2, binomial(n+k+j, k) / binomial(k+j, k)); /* Michael Somos, Apr 03 2021 */
    
  • SageMath
    def f(k): return (k+1)//2
    def t(n, k): return (-1)^(k*(n//2))*product(binomial(n+f(k) +j, f(k))/binomial(f(k) +j, f(k)) for j in range(f(k-1)))
    def A133815(n,k): return t(n-k, k)
    flatten([[A133815(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 16 2023

Formula

T(n,k) = if(k mod 2 = 0, Product_{j=0..(k-2)/2} C(n+k/2+j,k/2) / C(k/2+j,k/2), (cos(Pi*n/2) + sin(Pi*n/2))*Product_{j=0..(k-3)/2} C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)).
Previous Showing 11-12 of 12 results.