cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A186689 Numbers n such that n^4 + 1 is a semiprime.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 12, 13, 14, 17, 18, 21, 22, 23, 26, 29, 30, 32, 35, 36, 38, 39, 40, 42, 50, 52, 57, 58, 61, 62, 65, 68, 71, 72, 73, 78, 81, 84, 86, 92, 94, 98, 100, 102, 103, 105, 108, 112, 113, 114, 115, 116, 119, 120, 122, 124, 128, 129, 130, 138, 146, 148, 152, 153, 158
Offset: 1

Views

Author

Michel Lagneau, Feb 25 2011

Keywords

Comments

Corresponding semiprimes n^4+1 are in A186688.

Examples

			3 is in the sequence because 3^4 + 1 = 82 = 2*41 is semiprime.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[ n_] := (n > 1) && (2 == Plus @@ (Transpose[FactorInteger[n]][[2]]));
      Select[Range[300], SemiPrimeQ[#^4 + 1] &]
    Select[Range[200],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Jan 27 2013 *)

A105934 Positive integers n such that n^22 + 1 is semiprime (A001358).

Original entry on oeis.org

116, 176, 184, 300, 444, 470, 584, 690, 696, 950
Offset: 1

Views

Author

Jonathan Vos Post, Apr 26 2005

Keywords

Comments

We have the polynomial factorization: n^22 + 1 = (n^2 + 1) * (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^2+1 is prime and (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1) is prime.

Examples

			116^22 + 1 = 2618639792014920380336685706161496723088736257 = 13457 * 194593133091693570657404005808240820620401,
300^22 + 1 = 3138105960900000000000000000000000000000000000000000001 = 90001 * 34867456593815624270841435095165609271008099910001,
950^22 + 1 = 323533544973709366507562922501564025878906250000000000000000000001 = 902501 * 358485525194663902319845543109164450653136395416736380347501.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [2..1000] | IsSemiprime(n^22+1)]; // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[1000], PrimeOmega[#^22 + 1]==2&] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n)^22 + 1 is in A001358. a(n)^2+1 is in A000040 and (a(n)^20 - a(n)^18 + a(n)^16 - a(n)^14 + a(n)^12 - a(n)^10 + a(n)^8 - a(n)^6 + a(n)^4 - a(n)^2 + 1) is in A000040.
Previous Showing 11-12 of 12 results.