A360334
Array read by antidiagonals downwards: A(n,m) = number of set partitions of [3n] into 3-element subsets {i, i+k, i+2k} with 1 <= k <= m.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 5, 7, 8, 1, 1, 2, 5, 12, 13, 13, 1, 1, 2, 5, 15, 25, 24, 21, 1, 1, 2, 5, 15, 35, 56, 44, 34, 1, 1, 2, 5, 15, 46, 84, 126, 81, 55, 1, 1, 2, 5, 15, 55, 129, 211, 281, 149, 89, 1, 1, 2, 5, 15, 55, 185, 346, 537, 625, 274, 144, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 4, 5, 5, 5, 5, 5, 5, ...
1, 5, 7, 12, 15, 15, 15, 15, 15, ...
1, 8, 13, 25, 35, 46, 55, 55, 55, ...
1, 13, 24, 56, 84, 129, 185, 232, 232, ...
1, 21, 44, 126, 211, 346, 567, 831, 1040, ...
1, 34, 81, 281, 537, 973, 1781, 2920, 4242, ...
1, 55, 149, 625, 1352, 2732, 5643, 10213, 16110, ...
...
A104434
Number of ways to split 1, 2, 3, ..., 8n into n arithmetic progressions each with 8 terms.
Original entry on oeis.org
1, 1, 2, 4, 10, 20, 56, 116, 321, 739, 1881, 4200, 12776, 28528, 74020, 179197, 492839, 1146192
Offset: 0
A104436
Number of ways to split 1, 2, 3, ..., 3n into 3 arithmetic progressions each with n terms.
Original entry on oeis.org
1, 15, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1
A202954
Number of partitions of [1,...,3n] into triples satisfying x+y=4z.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 6, 0, 5, 0, 0, 349, 0, 443, 0, 0, 110757, 0, 1254452, 0, 0, 152965479, 0
Offset: 0
Original entry on oeis.org
1, 1, 8, 21, 3040, 20505, 10567748, 103372655
Offset: 1
- R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
- Ana Rechtman, Août 2018, 3e défi, Images des Mathématiques, CNRS, 2018 (in French).
Original entry on oeis.org
1, 0, 0, 6, 5, 349, 443, 110757
Offset: 1
A330285
The maximum number of arithmetic progressions in a sequence of length n.
Original entry on oeis.org
0, 0, 1, 3, 7, 12, 20, 29, 41, 55, 72, 90, 113, 137, 164, 194, 228, 263, 303, 344, 390, 439, 491, 544, 604, 666, 731, 799, 872, 946, 1027, 1109, 1196, 1286, 1379, 1475, 1579, 1684, 1792, 1903, 2021, 2140, 2266, 2393, 2525, 2662, 2802, 2943, 3093, 3245, 3402, 3562, 3727
Offset: 1
-
a(n) = sum(i=1, n, sum(j=1, i, floor((i - 1)/(j + 1))))
Comments