cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A104438 Number of ways to split 1, 2, 3, ..., 5n into 5 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 945, 55, 23, 21, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104439 Number of ways to split 1, 2, 3, ..., 6n into 6 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 10395, 232, 68, 59, 57, 56, 56, 56, 56, 56, 56, 56, 56, 56
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104440 Number of ways to split 1, 2, 3, ..., 7n into 7 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 135135, 1161, 161, 125, 119, 117, 116, 116, 116, 116, 116, 116, 116, 116, 116
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104441 Number of ways to split 1, 2, 3, ..., 8n into 8 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 2027025, 6643, 488, 349, 329, 323, 321, 320, 320, 320, 320, 320, 320, 320, 320
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A360334 Array read by antidiagonals downwards: A(n,m) = number of set partitions of [3n] into 3-element subsets {i, i+k, i+2k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 5, 7, 8, 1, 1, 2, 5, 12, 13, 13, 1, 1, 2, 5, 15, 25, 24, 21, 1, 1, 2, 5, 15, 35, 56, 44, 34, 1, 1, 2, 5, 15, 46, 84, 126, 81, 55, 1, 1, 2, 5, 15, 55, 129, 211, 281, 149, 89, 1, 1, 2, 5, 15, 55, 185, 346, 537, 625, 274, 144, 1
Offset: 1

Views

Author

Peter Dolland, Feb 03 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,    1,    1,    1,     1,     1, ...
  1,  2,   2,   2,    2,    2,    2,     2,     2, ...
  1,  3,   4,   5,    5,    5,    5,     5,     5, ...
  1,  5,   7,  12,   15,   15,   15,    15,    15, ...
  1,  8,  13,  25,   35,   46,   55,    55,    55, ...
  1, 13,  24,  56,   84,  129,  185,   232,   232, ...
  1, 21,  44, 126,  211,  346,  567,   831,  1040, ...
  1, 34,  81, 281,  537,  973, 1781,  2920,  4242, ...
  1, 55, 149, 625, 1352, 2732, 5643, 10213, 16110, ...
  ...
		

Crossrefs

Main diagonal is A334250.
Columns 1..3 are A000012, A000045(n+1), A000073(n+2).

Formula

A(n,m) = A104429(n) = A104443(n,3) for m >= floor((3n - 1) / 2).

A360491 Square of A(n,m) read by antidiagonals. A(n,m) = number of set partitions of [5n] into 5-element subsets {i, i+k, i+2k, i+3k, i+4k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 10, 13, 13, 1, 1, 2, 4, 10, 19, 24, 21, 1, 1, 2, 4, 10, 20, 41, 44, 34, 1, 1, 2, 4, 10, 21, 43, 84, 81, 55, 1, 1, 2, 4, 10, 21, 58, 89, 180, 149, 89, 1, 1, 2, 4, 10, 21, 59, 120, 192, 372, 274, 144, 1
Offset: 1

Views

Author

Peter Dolland, Feb 09 2023

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,    1,    1,    1,    1,    1, ...
  1,   2,   2,    2,    2,    2,    2,    2,    2, ...
  1,   3,   4,    4,    4,    4,    4,    4,    4, ...
  1,   5,   7,   10,   10,   10,   10,   10,   10, ...
  1,   8,  13,   19,   20,   21,   21,   21,   21, ...
  1,  13,  24,   41,   43,   58,   59,   59,   59, ...
  1,  21,  44,   84,   89,  120,  124,  125,  125, ...
  1,  34,  81,  180,  192,  280,  289,  344,  349, ...
  1,  55, 149,  372,  404,  626,  648,  759,  811, ...
  1,  89, 274,  785,  860, 1454, 1510, 1877, 1996, ...
  1, 144, 504, 1637, 1816, 3272, 3414, 4263, 4565, ...
  ...
		

Crossrefs

Main diagonal is A349430.
Columns 1..3 are A000012, A000045(n+1), A000073(n+2).

Formula

A(n,m) = A104431(n) = A104443(n,5) for m >= floor((5n - 1) / 4).

A104434 Number of ways to split 1, 2, 3, ..., 8n into n arithmetic progressions each with 8 terms.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 56, 116, 321, 739, 1881, 4200, 12776, 28528, 74020, 179197, 492839, 1146192
Offset: 0

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

Extensions

a(0), a(10)-a(17) from Alois P. Heinz, Nov 18 2020

A104436 Number of ways to split 1, 2, 3, ..., 3n into 3 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 15, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A360492 Square of A(n,m) read by antidiagonals. A(n,m) = number of set partitions of [6n] into 6-element subsets {i, i+k, i+2k, i+3k, i+4k, i+5k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 10, 13, 13, 1, 1, 2, 4, 10, 19, 24, 21, 1, 1, 2, 4, 10, 20, 41, 44, 34, 1, 1, 2, 4, 10, 20, 43, 84, 81, 55, 1, 1, 2, 4, 10, 20, 56, 89, 180, 149, 89, 1, 1, 2, 4, 10, 20, 57, 115, 192, 372, 274, 144, 1
Offset: 1

Views

Author

Peter Dolland, Feb 09 2023

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,    1,    1,    1,    1,     1, ...
  1,   2,   2,    2,    2,    2,    2,    2,     2, ...
  1,   3,   4,    4,    4,    4,    4,    4,     4, ...
  1,   5,   7,   10,   10,   10,   10,   10,    10, ...
  1,   8,  13,   19,   20,   20,   20,   20,    20, ...
  1,  13,  24,   41,   43,   56,   57,   57,    57, ...
  1,  21,  44,   84,   89,  115,  118,  119,   119, ...
  1,  34,  81,  180,  192,  267,  274,  328,   329, ...
  1,  55, 149,  372,  404,  592,  609,  718,   759, ...
  1,  89, 274,  785,  860, 1372, 1416, 1778,  1861, ...
  1, 144, 504, 1637, 1816, 3028, 3136, 3972,  4179, ...
  1, 233, 927, 3442, 3857, 7038, 7323, 9979, 10623, ...
  ...
		

Crossrefs

Columns 1..3 are A000012, A000045(n+1), A000073(n+2).

Formula

A(n,m) = A104432(n) = A104443(n,6) for m >= floor((6n - 1) / 5).

A360493 Square of A(n,m) read by antidiagonals. A(n,m) = number of set partitions of [7n] into 7-element subsets {i, i+k, i+2k, i+3k, i+4k, i+5k, i+6k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 10, 13, 13, 1, 1, 2, 4, 10, 19, 24, 21, 1, 1, 2, 4, 10, 20, 41, 44, 34, 1, 1, 2, 4, 10, 20, 43, 84, 81, 55, 1, 1, 2, 4, 10, 20, 56, 89, 180, 149, 89, 1, 1, 2, 4, 10, 20, 56, 115, 192, 372, 274, 144, 1
Offset: 1

Views

Author

Peter Dolland, Feb 09 2023

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,    1,    1,    1,    1,     1, ...
  1,   2,   2,    2,    2,    2,    2,    2,     2, ...
  1,   3,   4,    4,    4,    4,    4,    4,     4, ...
  1,   5,   7,   10,   10,   10,   10,   10,    10, ...
  1,   8,  13,   19,   20,   20,   20,   20,    20, ...
  1,  13,  24,   41,   43,   56,   56,   56,    56, ...
  1,  21,  44,   84,   89,  115,  116,  117,   117, ...
  1,  34,  81,  180,  192,  267,  269,  322,   323, ...
  1,  55, 149,  372,  404,  592,  597,  704,   744, ...
  1,  89, 274,  785,  860, 1372, 1384, 1741,  1822, ...
  1, 144, 504, 1637, 1816, 3028, 3060, 3886,  4088, ...
  1, 233, 927, 3442, 3857, 7038, 7114, 9742, 10374, ...
  ...
		

Crossrefs

Columns 1..3 are A000012, A000045(n+1), A000073(n+2).

Formula

A(n,m) = A104433(n) = A104443(n,7) for m >= floor((7*n - 1) / 6).
Previous Showing 11-20 of 20 results.