cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A104525 The number of hierarchical orderings among the parts of the integer partitions of the integer n.

Original entry on oeis.org

1, 4, 12, 40, 123, 395, 1227, 3851, 11944, 37032, 114144, 351040, 1075316, 3285398, 10007731, 30409157, 92169561, 278738219, 841132013, 2533138770, 7614144053, 22845435104, 68427663680, 204623945617, 610951554377, 1821438443615, 5422608839874, 16121857331124
Offset: 1

Views

Author

Thomas Wieder, Mar 12 2005. Definition revised Mar 28 2009

Keywords

Comments

Euler transform of A055887 = number of ordered partitions of partitions.

Examples

			Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a frame. For n=3 one has a(3) = 12 because:
{*:**}, {*:*}:{*}, {*}:{**}, {*:*:*}, {*}:{*}:{*}, {**}|{*}, {*}|{*:*}, {*}|{*}|{*}, {**}:{*}, {*}:{*:*}, {*}:{*}|{*}, {***}.
		

Crossrefs

Programs

  • Maple
    We can use combstruct to actually construct the structures A104525(n). %1 := Sequence(Set(Set(Z))).
    with(combinat): with (numtheory): b:= proc(n) local k; option remember; `if`(n=0, 1, add (numbpart(k) * b(n-k), k=1..n)) end: a:= proc(n) option remember; `if` (n=0, 1, add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=1..30); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    max = 30; A055887 = CoefficientList[1/(2 - 1/QPochhammer[x, x]) + O[x]^(max + 1), x] ; s = 1/Product[(1 - x^n)^A055887[[n + 1]], {n, 1, max}] + O[x]^max; CoefficientList[s, x] // Rest (* Jean-François Alcover, Jan 10 2016 *)

Extensions

More terms from Alois P. Heinz, Feb 02 2009

A305207 a(n) = [x^n] exp(Sum_{k>=1} x^k/(k*(1 - n*x^k))).

Original entry on oeis.org

1, 1, 3, 13, 95, 921, 11586, 176324, 3162447, 65233120, 1521743103, 39609506223, 1138093049808, 35779807446670, 1221719353617885, 45025117385882889, 1781345658408660655, 75304205654268663567, 3387556543611248410593, 161575661076504392490150, 8144909167115962980271095
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k/(k (1 - n x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n^(k - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(n^(k-1)).
Previous Showing 11-12 of 12 results.