A337455 Numbers of the form m + bigomega(m) with m a positive integer.
1, 3, 4, 6, 8, 11, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 51, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 84, 85, 87, 88, 89, 90, 92, 93
Offset: 1
Keywords
Examples
a(7) = 10 + A001222(10) = 10 + 2 = 12
Links
- Petr Kucheriaviy, On numbers not representable as n + ω(n), arXiv preprint (2022). arXiv:2203.12006 [math.NT]
Crossrefs
Programs
-
Mathematica
m = 100; Select[Union @ Table[n + PrimeOmega[n], {n, 1, m}], # <= m &] (* Amiram Eldar, Aug 28 2020 *)
-
PARI
upto(limit)=Set(select(t->t<=limit, apply(m->m+bigomega(m), [1..limit]))) \\ Andrew Howroyd, Aug 27 2020
-
PARI
list(lim)=my(v=List()); forfactored(n=1, lim\1-1, my(t=n[1]+bigomega(n)); if(t<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Dec 07 2022
Formula
Kucheriaviy proves that a(n) << n log log n and conjectures that a(n) ≍ n, that is, these numbers have positive lower density. - Charles R Greathouse IV, Dec 07 2022
Comments