cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A104816 Positions of 2 in partition of decimal expansion of Pi A104807.

Original entry on oeis.org

3, 8, 10, 16, 23, 26, 32, 37, 38, 55, 70, 75, 76, 77, 79, 84, 85, 91, 92, 99, 146, 148, 162, 167, 183, 191, 210, 213, 217, 221, 223, 224, 234, 235, 236, 249, 258, 259, 262, 279, 289, 290, 295, 297, 298, 302, 311, 315, 324, 329
Offset: 1

Views

Author

Zak Seidov, Mar 27 2005

Keywords

Crossrefs

A104819 Numbers with distinct digits appearing in partition of decimal expansion of Pi.

Original entry on oeis.org

314, 15926, 53, 5897, 932, 38462, 643, 38, 327950, 28, 84197, 1693, 9, 937510, 5820974, 94, 4592307816, 40628, 62089, 9862, 8034, 82534, 21, 1706, 798214, 80, 865132, 82306, 6470938, 4, 46095, 50, 582, 2317, 253, 5940812, 84, 81, 1, 1745028
Offset: 1

Views

Author

Zak Seidov, Mar 27 2005

Keywords

Comments

Start with decimal expansion of Pi: 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3... Part the sequence to the sections with distinct digits: s={3,1,4},{1,5,9,2,6},{5,3},{5,8,9,7},{9,3,2},{3,8,4,6,2},{6,4,3},... Then A104819(n) = number from digits of s(n): 314,15926,53,5897,932,38462,643,... Leading zero allowed as at first in a(42)= 193852 from {0,1,9,3,8,5,2}.

Crossrefs

Extensions

Comment from Jani Melik, Nov 13 2009

A104820 Primes with distinct digits appearing in partition of decimal expansion of Pi.

Original entry on oeis.org

53, 5897, 643, 1693, 5, 815209, 29, 13, 857, 2, 983, 367, 3, 9463, 2473, 7, 71, 7481, 8467, 560827, 7, 7, 409, 24953, 7, 631859, 2, 526193, 31, 8753, 17, 17, 857, 61, 89, 9721, 7, 415069, 59, 53, 31, 983, 8175463, 71, 601, 5, 9467, 7, 31, 367, 70289, 47, 19
Offset: 1

Views

Author

Zak Seidov, Mar 27 2005

Keywords

Examples

			Start with decimal expansion of Pi: 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3...
Part the sequence to the sections with distinct digits: s={3,1,4},{1,5,9,2,6},{5,3},{5,8,9,7},{9,3,2},{3,8,4,6,2},{6,4,3},...
Then sequence are primes from digits of s(): 53, 5897, 643,  ...
		

Crossrefs

A104821 Positions of prime numbers A104820 in A104819.

Original entry on oeis.org

3, 297, 4, 7, 12, 45, 330, 391, 82, 85, 92, 121, 251, 124, 214, 129, 304, 130, 353, 131, 137, 139, 144, 160, 163, 192, 286, 340, 146, 315, 150, 151, 158, 144, 160, 163, 192, 286, 340, 144, 160, 163, 192, 286, 340, 170, 172, 144, 160, 163, 192, 286, 340, 207
Offset: 1

Views

Author

Zak Seidov, Mar 27 2005

Keywords

Crossrefs

Formula

A104821(n)=Position[A104819, A104820(n)]

A167835 Length of sections with distinct digits in decimal expansion of square root of 2. (A002193).

Original entry on oeis.org

2, 3, 5, 2, 4, 3, 4, 1, 4, 4, 4, 4, 4, 3, 6, 3, 2, 3, 2, 2, 6, 7, 4, 4, 5, 7, 2, 5, 5, 5, 4, 3, 7, 2, 4, 3, 3, 3, 5, 1, 1, 4, 3, 3, 1, 2, 5, 2, 1, 4, 1, 3, 1, 3, 3, 5, 3, 5, 3, 3, 2, 6, 4, 4, 5, 6, 6
Offset: 1

Views

Author

Jani Melik, Nov 13 2009

Keywords

Crossrefs

Extensions

Corrected and extended by D. S. McNeil, Nov 22 2010

A167837 Length of sections with distinct digits in decimal expansion of e (A001113).

Original entry on oeis.org

4, 3, 2, 5, 4, 8, 6, 5, 2, 3, 5, 1, 1, 2, 4, 2, 2, 2, 3, 4, 2, 3, 2, 4, 3, 6, 5, 3, 4, 3, 2, 4, 4, 2, 3, 4, 3, 5, 8, 3, 2, 5, 5, 5, 3, 2, 4, 5, 7, 1, 4, 1, 7, 2, 3, 3, 1, 5, 6, 3, 5, 5, 1, 4, 9, 1, 4
Offset: 1

Views

Author

Jani Melik, Nov 13 2009

Keywords

Crossrefs

Cf. A104807.

Extensions

Corrected and extended by D. S. McNeil, Nov 22 2010

A334754 The size of partitions of the decimal digits of Pi, starting directly after the decimal point, such that each partition contains the maximum number of digits possible while also avoiding any repeated digits. A digit must be in a partition if the current partition does not contain the current digit.

Original entry on oeis.org

2, 5, 2, 4, 3, 5, 3, 2, 6, 2, 5, 4, 1, 6, 7, 2, 10, 5, 5, 4, 4, 5, 2, 4, 6, 2, 6, 5, 7, 1, 5, 2, 3, 4, 3, 7, 2, 2, 1, 7, 5, 7, 1, 3, 1, 4, 3, 4, 3, 3, 6, 3, 7, 4, 2, 5, 4, 4, 4, 7, 4, 3, 5, 4, 5, 5, 5, 4, 6, 2, 5, 6, 5, 5, 2, 2, 2, 4, 2, 4, 1, 6, 4
Offset: 1

Views

Author

Ryan Brooks, May 10 2020

Keywords

Comments

Assuming digits are random, the expected value for the size of the partitions is 3.66021568 = Sum_{k=1..10} k^2*9!/(10^k*(10-k)!).

Examples

			Pi=3.1415926535897932384626433... => ignore lead 3 and partition as such: 0.|14|15926|53|5897|932|38462|643|3... => 2,5,2,4,3,5,3,...
		

Crossrefs

Cf. A000796 (Pi). Essentially the same as A104807.

Programs

  • PARI
    F(v)={my(L=List(), S=Set()); for(i=1, #v, if(setsearch(S, v[i]), listput(L,#S); S=Set()); S=setunion(S,[v[i]])); Vec(L)}
    { localprec(10^3); my(t=Pi-3); F(digits(floor(t*10^precision(t)))) } \\ Andrew Howroyd, Aug 10 2020
Previous Showing 11-17 of 17 results.