cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A289705 Number of 4-cycles in the n-triangular honeycomb queen graph.

Original entry on oeis.org

0, 0, 15, 96, 330, 855, 1866, 3624, 6468, 10818, 17193, 26208, 38598, 55209, 77028, 105168, 140904, 185652, 241011, 308736, 390786, 489291, 606606, 745272, 908076, 1098006, 1318317, 1572480, 1864254, 2197629, 2576904, 3006624, 3491664, 4037160, 4648599, 5331744, 6092730
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Cf. A105636 (3-cycles), A289706 (5-cycles), A289707 (6-cycles).

Programs

  • Mathematica
    Table[(24 n^5 + 170 n^4 - 660 n^3 + 160 n^2 + 606 n - 165 + (-1)^n (165 - 30 n))/320, {n, 20}]
    LinearRecurrence[{4, -4, -4, 10, -4, -4, 4, -1}, {0, 0, 15, 96, 330, 855, 1866, 3624}, 20]
    CoefficientList[Series[-((3 x^2 (-5 - 12 x - 2 x^2 + 7 x^3))/((-1 + x)^6 (1 + x)^2)), {x, 0, 20}], x]

Formula

a(n) = (24*n^5 + 170*n^4 - 660*n^3 + 160*n^2 + 606*n - 165 + (-1)^n*(165 - 30*n))/320.
a(n) = 4*a(n-1)-4*a(n-2)-4*a(n-3)+10*a(n-4)-4*a(n-5)-4*a(n-6)+4*a(n-7)-a(n-8).
G.f.: (-3*x^3*(-5 - 12*x - 2*x^2 + 7*x^3))/((-1 + x)^6*(1 + x)^2).

A303383 Total volume of all cubes with side length q such that n = p + q and p <= q.

Original entry on oeis.org

0, 1, 8, 35, 91, 216, 405, 748, 1196, 1925, 2800, 4131, 5643, 7840, 10241, 13616, 17200, 22113, 27216, 34075, 41075, 50336, 59653, 71820, 83916, 99541, 114920, 134603, 153811, 178200, 201825, 231616, 260288, 296225, 330616, 373491, 414315, 464968, 512981
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 22 2018

Keywords

Crossrefs

Cf. A105636.
Subsequence of A217843.
After 8, all terms belong to A265377.

Programs

  • Magma
    [0] cat [&+[(n-k)^3: k in [1..n div 2]]: n in [2..80]]; // Vincenzo Librandi, Apr 23 2018
  • Mathematica
    Table[Sum[(n - i)^3, {i, Floor[n/2]}], {n, 50}]

Formula

a(n) = Sum_{i=1..floor(n/2)} (n-i)^3.
From Bruno Berselli, Apr 23 2018: (Start)
G.f.: x*(1 + x + x^2)*(1 + 6*x + 16*x^2 + 6*x^3 + x^4)/((1 - x)^5*(1 + x)^4).
a(n) = (30*(n - 2)*(n + 1)*(n^2 - n + 2) + (2*n - 1)*(2*n^2 - 2*n - 1)*(-1)^n + 119)/128. Therefore:
a(n) = n^2*(3*n - 2)*(5*n - 6)/64 for n even;
a(n) = (n - 1)^2*(3*n - 1)*(5*n + 1)/64 for n odd. (End)
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9). - Wesley Ivan Hurt, Apr 23 2021
Previous Showing 11-12 of 12 results.