cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A257773 Number of numbers k, 0 <= k <= 9, such that n is a Belgian-k number.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 7, 6, 4, 4, 4, 4, 3, 2, 5, 7, 5, 4, 3, 3, 3, 3, 2, 2, 4, 5, 4, 4, 2, 3, 3, 2, 2, 2, 3, 4, 4, 3, 3, 3, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 2, 1, 1, 2, 3, 2, 2, 2, 1
Offset: 0

Views

Author

Reinhard Zumkeller, May 08 2015

Keywords

Comments

See A106039 for definition of Belgian-k numbers.
row lengths in A257770;
a(A257785(n)) = 1;
For n > 1: a(A007088(n)) = 10.

Crossrefs

Programs

  • Haskell
    a257773 = length . a257770_row

A257778 Smallest k, such that n is a Belgian-k number.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 8, 0, 0, 0, 1, 0, 2, 0, 0, 6, 5, 0, 0, 2, 0, 3, 0, 0, 4, 2, 0, 0, 1, 0, 1, 0, 0, 2, 3, 0, 6, 0, 3, 3, 0, 0, 0, 1, 4, 1, 3, 0, 5, 0, 0, 4, 4, 0, 2, 6, 3, 0, 0, 0, 3, 1, 3, 4, 0, 3, 8, 0, 0, 2, 6, 0, 7
Offset: 0

Views

Author

Reinhard Zumkeller, May 08 2015

Keywords

Comments

See A106039 for definition of Belgian-k numbers;
a(n) = A257770(n,0);
a(n) <= A257779(n); a(A257785(n)) = A257779(A257785(n));
conjecture: a(n) < 9;
a(A106039(n)) = 0; a(A257782(n)) > 0.

Crossrefs

Programs

  • Haskell
    a257778 = head . a257770_row

A257779 Largest k, such that n is a Belgian-k number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 8, 8, 6, 9, 8, 9, 8, 7, 9, 8, 9, 9, 6, 8, 9, 7, 5, 3, 8, 7, 8, 8, 8, 9, 6, 3, 8, 6, 5, 9, 5, 8, 9, 5, 7, 9, 6, 3, 6, 6, 8, 9, 8, 4, 6, 9, 6, 9, 7, 8, 9, 6, 8, 8, 4, 7, 3, 8, 8, 9, 4, 9, 4, 7
Offset: 0

Views

Author

Reinhard Zumkeller, May 08 2015

Keywords

Comments

See A106039 for definition of Belgian-k numbers;
a(n) = A257770(n,A257773(n));
a(n) >= A257778(n); a(A257785(n)) = A257778(A257785(n)).

Crossrefs

Programs

  • Haskell
    a257779 = last . a257770_row

A257785 Numbers that are Belgian-k for exactly one k.

Original entry on oeis.org

0, 47, 49, 59, 65, 68, 76, 78, 79, 85, 87, 89, 95, 96, 98, 167, 177, 187, 193, 194, 239, 267, 268, 269, 286, 287, 293, 298, 299, 338, 349, 359, 367, 379, 394, 397, 398, 418, 437, 438, 458, 478, 479, 492, 497, 498, 499, 507, 528, 529, 536, 547, 548, 560, 568
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2015

Keywords

Comments

See A106039 for definition of Belgian-k numbers;
A257773(a(n)) = 1;
A257778(a(n)) = A257779(a(n)).

Examples

			Let B(n) = A257778(a(n)), the singleton of a(n)-th row in A257770:
.   n |  a(n) | B(n)        n |  a(n) | B(n)         n |  a(n) | B(n)
.  ---+-------+-----     -----+-------+-----     ------+-------+-----
.   1 |     0 |   0       100 |   763 |   4       1000 |  6702 |   6
.   2 |    47 |   3       101 |   766 |   6       1001 |  6706 |   5
.   3 |    49 |   6       102 |   768 |   5       1002 |  6709 |   8
.   4 |    59 |   3       103 |   769 |   8       1003 |  6719 |   3
.   5 |    65 |   4       104 |   779 |   6       1004 |  6725 |   5
.   6 |    68 |   6       105 |   781 |   6       1005 |  6728 |   6
.   7 |    76 |   4       106 |   785 |   5       1006 |  6730 |   4
.   8 |    78 |   3       107 |   787 |   2       1007 |  6736 |   4
.   9 |    79 |   8       108 |   788 |   6       1008 |  6742 |   3
.  10 |    85 |   7       109 |   789 |   6       1009 |  6747 |   3
.  11 |    87 |   4       110 |   790 |   6       1010 |  6748 |   6
.  12 |    89 |   4       111 |   793 |   7       1011 |  6752 |   6
.  13 |    95 |   2       112 |   794 |   7       1012 |  6753 |   6
.  14 |    96 |   6       113 |   795 |   2       1013 |  6755 |   3
.  15 |    98 |   4       114 |   796 |   4       1014 |  6756 |   6
.  16 |   167 |   6       115 |   797 |   8       1015 |  6758 |   6
.  17 |   177 |   4       116 |   798 |   6       1016 |  6766 |   3
.  18 |   187 |   2       117 |   799 |   8       1017 |  6768 |   5
.  19 |   193 |   1       118 |   805 |   4       1018 |  6770 |   4
.  20 |   194 |   2       119 |   807 |   4       1019 |  6772 |   5  .
		

Crossrefs

Programs

  • Haskell
    a257785 n = a257785_list !! (n-1)
    a257785_list = filter ((== 1) . a257773) [0..]

A257782 Numbers that are not Belgian-0 numbers.

Original entry on oeis.org

14, 15, 16, 19, 23, 25, 28, 29, 32, 34, 37, 38, 41, 43, 46, 47, 49, 51, 52, 56, 57, 58, 59, 61, 64, 65, 67, 68, 69, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94, 95, 96, 97, 98, 103, 104, 105, 107, 109, 113, 115, 116, 118, 119, 122, 124, 125
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2015

Keywords

Comments

A257778(a(n)) = A257770(a(n),0) > 0.

Crossrefs

Cf. A257770, A257778, A106039 (complement).

Programs

  • Haskell
    a257782 n = a257782_list !! (n-1)
    a257782_list = filter ((> 0) . a257778) [0..]

A253717 Primes equal to their partial cyclical digital sum numbers.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 31, 53, 71, 101, 131, 157, 173, 181, 197, 211, 283, 431, 439, 457, 461, 487, 509, 571, 601, 643, 727, 911, 929, 1021, 1031, 1033, 1051, 1093, 1151, 1163, 1171, 1201, 1231, 1249, 1259, 1301, 1303, 1327, 1373, 1399, 1429, 1451, 1453, 1493
Offset: 1

Views

Author

V.J. Pohjola, May 02 2015

Keywords

Comments

Subsequence of primes of A106039. - Michel Marcus, May 03 2015

Examples

			Prime(37) = 157 = (1+5+7)*12 + 1.
Prime(40) = 173 = (1+7+3)*15 + 1+7.
Prime(42) = 181 = (1+8+1)*18 + 1.
		

Crossrefs

Cf. A257275.
Cf. A106039.

Programs

  • Haskell
    a253717 n = a253717_list !! (n-1)
    a253717_list = filter ((== 1) . a010051') a106039_list
    -- Reinhard Zumkeller, May 07 2015
  • Mathematica
    terms = {}; (Do[p = Prime[n]; iD = IntegerDigits[p]; iD[[0]] = 0;
      a = Apply[Plus, iD]; pf = p - Mod[p, Floor[p/a]*a];
      (Do[pf = pf + Apply[Plus, iD[[i]]];
        If[pf == p, AppendTo[terms, pf]], {i, 0, IntegerLength[Prime[n]]}]), {n,
       1, 1000}]); Union[terms]
  • PARI
    isok(n) = {my(v = divrem(n, sumdigits(n))[2]); if (!v, return (1)); d = digits(n); for (i=1, #d, v -= d[i]; if (!v, return (1));); return (0);}
    lista(nn) = forprime (n=1, nn, if (isok(n), print1(n, ", "))); \\ Michel Marcus, May 03 2015
    

A107062 Union of set of Belgian-k numbers for k = 0..9 which begin with k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 20, 22, 25, 26, 30, 31, 33, 34, 35, 39, 40, 43, 44, 50, 52, 53, 55, 60, 61, 62, 66, 68, 70, 71, 77, 80, 86, 88, 90, 93, 99, 100, 101, 106, 110, 111, 113, 115, 121, 122, 130, 131, 137, 142, 155, 157, 161, 170, 171, 172, 178
Offset: 0

Views

Author

Eric Angelini, Jun 07 2005

Keywords

Crossrefs

Programs

  • Mathematica
    belgianKQ[n_] := Block[{id = Join[{0}, IntegerDigits@ n]}, MemberQ[ Accumulate@ id, Mod[n - id[[2]], Plus @@ id]]]; Select[ Range@ 178, belgianKQ] (* Robert G. Wilson v, May 06 2011 *)

A107070 Numbers m with the following property. Suppose m = d1 d2 ... dk in base 10. Construct the sequence with first term d1 and successive differences d1 d2 ... dk d1 d2 ... dk d1 d2 ...; then this sequence has as its initial k digits d1 d2 ... dk and also contains the number m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 61, 71, 918, 3612, 5101, 8161, 12481, 51011, 248161, 361213, 5101111, 7141519, 8161723, 481617232, 2481617232, 4816172324, 5101111121, 24816172324, 51011111213, 71415192025, 612131516192, 816172324313, 3612131516192, 5101111121314, 6121315161920, 9181927283739
Offset: 1

Views

Author

Eric Angelini, Jun 07 2005

Keywords

Comments

These are sometimes called Eric numbers or Belgian numbers. - N. J. A. Sloane, May 06 2011
Each digit {1..9} will produce a quasi-automorphic sequence. Thus this sequence is infinite. - Robert G. Wilson v, May 06 2011
The existence of the nine templates upon which the quasi-automorphic sequences are decided guarantees that no more than nine solutions exist for a given digit-length. The equidistribution of the ten base-ten digits within these templates predicts a long-term average of two solutions per digit-length. All nine solutions happen trivially for digit-length 1 (terms 1-9) and not again until digit-length 1899283 (terms 3594728-3594736). - Hans Havermann, May 27 2011, Aug 15 2011
The n-th term is prime for: n= 2, 3, 5, 7, 10, 11, 14, 15, 18, 19, 51, 55, 238, 907, 979, 1814, ..., . - Robert G. Wilson v, May 06 2011

Examples

			The following example shows why 61 is a member:
6.12.13.19.20.26.27.33.34.40.41.47.48.54.55.61... (sequence)
.6..1..6..1..6..1..6..1..6..1..6..1..6..1..6... (first differences)
		

Crossrefs

Programs

  • Mathematica
    belgianDQ[n_] := Block[{id = IntegerDigits@ n, id1}, id1 = id[[1]]; MemberQ[ Accumulate@ Join[{0}, id], Mod[n - id1, Plus @@ id]] && id == Take[ Flatten[ IntegerDigits[ FoldList[#1 + #2 &, id1, id]]], Length@ id]] (* Robert G. Wilson v, May 06 2011 *)

Extensions

Minor edits by N. J. A. Sloane, May 06 2011

A298984 Numbers k such that floor((10^p) / k) has digital sum k for some integer p.

Original entry on oeis.org

1, 3, 7, 8, 9, 13, 14, 22, 30, 33, 34, 43, 49, 51, 55, 56, 62, 66, 73, 76, 83, 90, 91, 92, 94, 95, 96, 98, 99, 103, 109, 113, 127, 129, 130, 132, 133, 137, 139, 141, 150, 154, 159, 169, 170, 174, 175, 177, 179, 180, 181, 185, 186, 192, 194, 202, 208, 211, 215
Offset: 1

Views

Author

Rémy Sigrist, Jan 31 2018

Keywords

Comments

This sequence has similarities with A106039: here some partial sum of digits of 1/k equals k, there some partial (cyclical) sum of digits of k equals k.
A052268 is a subsequence.

Examples

			floor(1000 / 7) = 142 and 1 + 4 + 2 = 7, hence 7 belongs to this sequence.
floor(1 / 5) = 0 and floor ((10^p) / 5) = 2 for any p > 0, hence 5 does not belong to this sequence.
		

Crossrefs

Programs

  • PARI
    is(n) = my (r=1/n, s=0); while (r, s+=floor(r); if (s==n, return (1), s>n, return (0)); r = frac(r)*10); return (0)

A357894 Integers k such that the sum of some number of initial decimal digits of sqrt(k) is equal to k.

Original entry on oeis.org

0, 1, 6, 10, 14, 18, 27, 33, 41, 43, 46, 55, 56, 62, 66, 69, 70, 77, 80, 87, 93, 98, 102, 108, 110, 123, 124, 145, 147, 149, 150, 154, 157, 162, 164, 165, 168, 176, 177, 179, 180, 182, 183, 197, 204, 213, 214, 219, 224, 236, 237, 242, 248, 251, 252, 261, 262, 263, 271, 274, 285, 295
Offset: 1

Views

Author

Gil Broussard, Oct 18 2022

Keywords

Comments

For integers k that are squares of integers, "Sum of initial digits" includes digits to the left of the decimal point only, as there are no digits other than zero to the right of the decimal point. This constraint contributes terms 0 and 1 to the sequence.
For integers k with irrational sqrt(k), "Sum of initial digits" includes digits to the left of the decimal point and to the right of the decimal point.
"Initial digits" implies a sufficient number of digits to produce either a sum > k or a sum = k condition, halting at whichever condition occurs first (sum > k condition is discarded).

Examples

			41 is a term because sqrt(41) = 6.4031242374328... and 6+4+0+3+1+2+4+2+3+7+4+3+2 = 41.
42 is not a term because sqrt(42) = 6.480740698407860... and 6+4+8+0+7+4+0+6 = 35 and 6+4+8+0+7+4+0+6+9 = 44 (no sum of initial digits = 42).
144 is not a term because sqrt(144) = 12 (no digits to the right of the decimal), and 1+2 is not equal to 144.
		

Crossrefs

Cf. A106039.

Programs

  • PARI
    is(n) = { my (d=digits(sqrtint(n)), s=0); for (i=1, #d, s+=d[i]; if (s==n, return (1), s>n, return (0););); if (issquare(n), return (n==0);); my (n0=n); while (1, s+=sqrtint(n0*=100)%10; if (s==n, return (1), s>n, return (0););); } \\ Rémy Sigrist, Oct 19 2022
Previous Showing 11-20 of 20 results.