cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A329376 Multiplicative with a(p^e) = p when e = 2, otherwise a(p^e) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2019

Keywords

Comments

Product of those distinct prime factors that occur exactly twice in the prime factorization of n, that is, whose exponent is 2.

Crossrefs

Row 3 of array A106177, and the square roots of its row 9.

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, p, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 11 2023 *)
  • PARI
    A329376(n) = { my(f = factor(n)); prod(i=1,#f~,f[i, 1]^(2 == f[i, 2])); };
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X^2 + X + X^2/(-1 + 1/X)))[n], ", ")) \\ Vaclav Kotesovec, May 31 2024

Formula

Multiplicative with a(p^e) = p when e = 2, otherwise a(p^e) = 1.
a(n) <= A000196(n).
From Amiram Eldar, Feb 11 2023: (Start)
a(n) <= sqrt(n), with equality if and only if n is in A062503.
a(n) = 1 if and only if n is in A337050. (End)
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(2*s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(5*s-1) + 1/p^(5*s-2) + 1/p^(4*s-1) - 1/p^(4*s-2) - 1/p^(3*s-1) + 1/p^(3*s) - 1/p^(2*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(5*s-1) + 1/p^(5*s-2) + 1/p^(4*s-1) - 1/p^(4*s-2) - 1/p^(3*s-1) + 1/p^(3*s) - 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.33718787379158997196169281615215824494915412775816393888028828465611936...,
f'(1) = f(1) * Sum_{p prime} (9*p^2 - 12*p + 5) * log(p) / (p^4 - 3*p^2 + 3*p - 1) = f(1) * 3.78385641685861932254178374972226733621783278751462026270346293...
and gamma is the Euler-Mascheroni constant A001620. (End)

A109299 Primal codes of canonical finite permutations on positive integers.

Original entry on oeis.org

1, 2, 12, 18, 360, 540, 600, 1350, 1500, 2250, 75600, 105840, 113400, 126000, 158760, 246960, 283500, 294000, 315000, 411600, 472500, 555660, 735000, 864360, 992250, 1296540, 1389150, 1440600, 1653750, 2572500, 3241350, 3601500, 3858750
Offset: 1

Views

Author

Jon Awbrey, Jul 09 2005

Keywords

Comments

A canonical finite permutation on positive integers is a bijective mapping of [n] = {1, ..., n} to itself, counting the empty mapping as a permutation of the empty set.
From Rémy Sigrist, Sep 18 2021: (Start)
As usual with lists, the terms of the sequence are given in ascending order.
Equivalently, these are the numbers m such that A001221(m) = A051903(m) = A061395(m) = A071625(m).
This sequence has connections with A175061; here the prime factorizations, there the run-lengths in binary expansions, encode finite permutations.
There are m! terms with m distinct prime factors, the least one being A006939(m) and the greatest one being A076954(m); these m! terms are not necessarily contiguous. (End)

Examples

			Writing (prime(i))^j as i:j, we have this table:
Primal Codes of Canonical Finite Permutations
        1 = { }
        2 = 1:1
       12 = 1:2 2:1
       18 = 1:1 2:2
      360 = 1:3 2:2 3:1
      540 = 1:2 2:3 3:1
      600 = 1:3 2:1 3:2
     1350 = 1:1 2:3 3:2
     1500 = 1:2 2:1 3:3
     2250 = 1:1 2:2 3:3
    75600 = 1:4 2:3 3:2 4:1
   105840 = 1:4 2:3 3:1 4:2
   113400 = 1:3 2:4 3:2 4:1
   126000 = 1:4 2:2 3:3 4:1
   158760 = 1:3 2:4 3:1 4:2
   246960 = 1:4 2:2 3:1 4:3
   283500 = 1:2 2:4 3:3 4:1
   294000 = 1:4 2:1 3:3 4:2
   315000 = 1:3 2:2 3:4 4:1
   411600 = 1:4 2:1 3:2 4:3
   472500 = 1:2 2:3 3:4 4:1
   555660 = 1:2 2:4 3:1 4:3
   735000 = 1:3 2:1 3:4 4:2
   864360 = 1:3 2:2 3:1 4:4
   992250 = 1:1 2:4 3:3 4:2
  1296540 = 1:2 2:3 3:1 4:4
  1389150 = 1:1 2:4 3:2 4:3
  1440600 = 1:3 2:1 3:2 4:4
  1653750 = 1:1 2:3 3:4 4:2
  2572500 = 1:2 2:1 3:4 4:3
  3241350 = 1:1 2:3 3:2 4:4
  3601500 = 1:2 2:1 3:3 4:4
  3858750 = 1:1 2:2 3:4 4:3
  5402250 = 1:1 2:2 3:3 4:4
		

References

  • Suggested by Franklin T. Adams-Watters

Crossrefs

Programs

  • PARI
    \\ See Links section.
    
  • PARI
    is(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); Set(e)==[1..#e] && (#p==0 || p[#p]==prime(#p)) } \\ Rémy Sigrist, Sep 18 2021

Extensions

Offset changed to 1 and data corrected by Rémy Sigrist, Sep 18 2021

A112480 Positive integers sorted by rote weight, rote wagage and rote height.

Original entry on oeis.org

1, 2, 3, 4, 9, 5, 7, 8, 16, 6, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 12, 18, 10, 14, 37, 61, 125, 169, 343, 529, 625, 729, 2401, 4096, 19683, 262144, 29, 41, 43, 83, 97, 103, 121, 227, 243, 289, 311, 361, 419, 1024, 2187, 2809, 3671
Offset: 1

Views

Author

Jon Awbrey, Sep 27 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote wayage or root degree is w(m) = omega(m) = A001221(m) and the rote height in gammas is h(m) = A109301(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g w h | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 1 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 1 2 | 2 | 2 | 2
================================================================
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 1 2 | 1 | ` |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 1 3 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 1 3 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 1 3 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 1 3 | 4 | 5 |
----------------+---------------------------+-------+---+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 2 | 1 | 1 | 6
================================================================
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 1 3 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 1 3 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 1 3 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 1 3 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 1 3 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 1 3 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 1 3 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 1 3 | 8 | ` |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 1 4 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 1 4 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 1 4 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 1 4 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 1 4 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 1 4 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 1 4 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 1 4 | 8 |16 |
----------------+---------------------------+-------+---+---+---
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 2 | 2 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 2 3 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 2 3 | 2 | 4 |20
================================================================
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `37 | 5 1 3 | ` | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `61 | 5 1 3 | ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 125 | 5 1 3 | ` | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 169 | 5 1 3 | ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 343 | 5 1 3 | ` | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 529 | 5 1 3 | ` | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 625 | 5 1 3 | ` | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 729 | 5 1 3 | ` | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2401 | 5 1 3 | ` | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `4096 | 5 1 3 | ` | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 19683 | 5 1 3 | ` | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `262144 | 5 1 3 |12 | ` |
----------------+---------------------------+-------+---+---+---
10:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `29 | 5 1 4 | ` | ` |
13:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `41 | 5 1 4 | ` | ` |
14:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `43 | 5 1 4 | ` | ` |
23:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `83 | 5 1 4 | ` | ` |
25:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `97 | 5 1 4 | ` | ` |
27:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 103 | 5 1 4 | ` | ` |
5:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 121 | 5 1 4 | ` | ` |
49:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 227 | 5 1 4 | ` | ` |
2:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 243 | 5 1 4 | ` | ` |
7:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 289 | 5 1 4 | ` | ` |
64:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 311 | 5 1 4 | ` | ` |
8:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 361 | 5 1 4 | ` | ` |
81:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 419 | 5 1 4 | ` | ` |
1:10` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1024 | 5 1 4 | ` | ` |
2:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2187 | 5 1 4 | ` | ` |
16:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2809 | 5 1 4 | ` | ` |
512:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `3671 | 5 1 4 | ` | ` |
2:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `6561 | 5 1 4 | ` | ` |
1:13` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `8192 | 5 1 4 | ` | ` |
1:14` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 16384 | 5 1 4 | ` | ` |
1:23` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 8388608 | 5 1 4 | ` | ` |
1:25` ` ` ` ` ` | ` ` ` ` ` ` ` ` `33554432 | 5 1 4 | ` | ` |
2:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` `43046721 | 5 1 4 | ` | ` |
1:27` ` ` ` ` ` | ` ` ` ` ` ` ` ` 134217728 | 5 1 4 | ` | ` |
1:49` ` ` ` ` ` | ` ` ` ` ` 562949953421312 | 5 1 4 | ` | ` |
1:64` ` ` ` ` ` | ` ` `18446744073709551616 | 5 1 4 | ` | ` |
1:81` ` ` ` ` ` | 2417851639229258349412352 | 5 1 4 | ` | ` |
1:512 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^512 | 5 1 4 |28 | ` |
----------------+---------------------------+-------+---+---+---
11:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `31 | 5 1 5 | ` | ` |
17:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `59 | 5 1 5 | ` | ` |
19:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `67 | 5 1 5 | ` | ` |
32:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 131 | 5 1 5 | ` | ` |
53:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 241 | 5 1 5 | ` | ` |
128:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 719 | 5 1 5 | ` | ` |
256:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1619 | 5 1 5 | ` | ` |
1:11` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2048 | 5 1 5 | ` | ` |
1:17` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `131072 | 5 1 5 | ` | ` |
1:19` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `524288 | 5 1 5 | ` | ` |
65536:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` `821641 | 5 1 5 | ` | ` |
1:32` ` ` ` ` ` | ` ` ` ` ` ` ` `4294967296 | 5 1 5 | ` | ` |
1:53` ` ` ` ` ` | ` ` ` ` `9007199254740992 | 5 1 5 | ` | ` |
1:128 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^128 | 5 1 5 | ` | ` |
1:256 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^256 | 5 1 5 | ` | ` |
1:65536 ` ` ` ` | ` ` ` ` ` ` ` ` ` 2^65536 | 5 1 5 |16 |56 |
----------------+---------------------------+-------+---+---+---
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `36 | 5 2 2 | 1 | ` |
----------------+---------------------------+-------+---+---+---
2:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `15 | 5 2 3 | ` | ` |
1:2 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `20 | 5 2 3 | ` | ` |
2:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `21 | 5 2 3 | ` | ` |
1:3 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `24 | 5 2 3 | ` | ` |
1:1 6:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `26 | 5 2 3 | ` | ` |
1:2 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `28 | 5 2 3 | ` | ` |
1:1 9:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `46 | 5 2 3 | ` | ` |
1:4 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `48 | 5 2 3 | ` | ` |
1:1 3:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `50 | 5 2 3 | ` | ` |
1:1 2:3 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `54 | 5 2 3 | ` | ` |
1:1 4:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `98 | 5 2 3 | ` | ` |
1:1 2:4 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 162 | 5 2 3 |12 | ` |
----------------+---------------------------+-------+---+---+---
1:1 5:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `22 | 5 2 4 | ` | ` |
1:1 7:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `34 | 5 2 4 | ` | ` |
1:1 8:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `38 | 5 2 4 | ` | ` |
1:1 16:1` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 106 | 5 2 4 | 4 |17 |73
================================================================
a = this sequence
g = rote weight in gammas = A062537
w = rote wayage in gammas = A001221
h = rote height in gammas = A109301
r = number in (g,h,w) set = A112481
s = count in (g, w) class = A111797
t = count in weight class = A061396
		

Crossrefs

A112481 Tetrahedron T(g, w, h) = number of rotes of weight g, wayage w, height h.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 8, 8, 2, 2, 12, 28, 16, 1, 12, 4
Offset: 1

Views

Author

Jon Awbrey, Sep 27 2005

Keywords

Comments

T(g, w, h) = |{m : A062537(m) = g, A001221(m) = w, A109301(m) = h}|.
This is the column that is labeled "r" in the tabulation of A112480.
a(n) is a permutation of the elements in A112096.
g = h > 0 implies w = 1 and T(j, 1, j) = 2^(j-1) = A000079(j-1).

Examples

			Table T(g, w, h), omitting empty cells, starts out as follows:
--------+-------------------------------------------------------
g\(w,h) | (0,0) (1,1) (1,2) ` ` ` (1,3) ` ` ` (1,4) ` ` ` (1,5)
` ` ` ` | ` ` ` ` ` ` ` ` ` (2,2) ` ` ` (2,3) ` ` ` (2,4) ` ` `
========+=======================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` ` ` 8 ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `12 ` ` ` ` `28 ` ` ` ` `16 `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` ` ` ` `12 ` ` ` ` ` 4 ` ` ` `
--------+-------------------------------------------------------
Row sums = A111797. Horizontal section sums = A061396.
		

Crossrefs

A112870 Positive integers sorted by rote height and primal code characteristic.

Original entry on oeis.org

1, 2, 6, 9, 12, 18, 36, 3, 4
Offset: 1

Views

Author

Jon Awbrey, Oct 14 2005

Keywords

Comments

Positive integers m sorted by h(m) = A109301(m) and q(m) = A108352(m).
Using "quench" as a shorter substitute for "primal code characteristic", the rote corresponding to the positive integer m has a quench of q(m) = A108352(m). Numbers with primal code characteristic 0 are "unquenchable".

Examples

			Primal Function | Primal Code = a | h q | s | t
----------------+-----------------+-----+---+---
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
----------------+-----------------+-----+---+---
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
----------------+-----------------+-----+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` 6 | 2 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 9 | 2 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` `12 | 2 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` `18 | 2 0 | ` |
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` `36 | 2 0 | 5 |
----------------+-----------------+-----+---+---
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 4 | 2 2 | 2 | 7
----------------+-----------------+-----+---+---
a = this sequence
h = rote height in gammas = A109301
q = primal code character = A108352
s = count in (h, q) class = A112871
t = count in height class = A109300
		

Crossrefs

A113199 Positive integers sorted by rote weight, rote quench and rote height.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 12, 18, 10, 14, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 36, 26, 46, 50, 54, 98, 125, 162, 2401, 22, 34, 38, 106, 15, 21, 37, 61, 169, 343, 529, 625, 729, 4096, 19683, 262144, 29, 41, 43, 83, 97, 103, 121, 227
Offset: 1

Views

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote quench or primal code characteristic is q(m) = A108352(m) and the rote height in gammas is h(m) = A109301(m).
This sequence begins to differ from A113197 at the 40th term, a(40) = 22.

Examples

			Primal Functions, Primal Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g q h | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 1 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 0 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 2 | 2 | 2 | 2
================================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 0 2 | ` | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 0 2 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 2 3 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 2 3 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 2 3 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 2 3 | 4 | 4 | 6
================================================================
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 0 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 0 2 | 2 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 0 3 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 0 3 | 2 | 4 |
----------------+---------------------------+-------+---+---+---
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 2 3 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 2 3 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 2 3 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 2 3 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 2 3 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 2 3 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 2 3 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 2 3 | 8 | ` |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 2 4 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 2 4 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 2 4 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 2 4 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 2 4 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 2 4 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 2 4 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 2 4 | 8 |16 |20
================================================================
a = this sequence
g = rote weight in gammas = A062537
q = primal code character = A108352
h = rote height in gammas = A109301
r = number in (g,q,h) set = A113200
s = count in (g, q) class = A112869
t = count in weight class = A061396
		

Crossrefs

A113200 Tetrahedron T(g, q, h) = number of rotes of weight g, quench q, height h.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 2, 8, 8, 1, 8, 4, 12, 28, 16, 4
Offset: 1

Views

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

T(g, q, h) = |{m : A062537(m) = g, A108352(m) = q, A109301(m) = h}|.
This is the column that is labeled "r" in the tabulation of A113199.
a(n) is a permutation of the elements in A113198.

Examples

			Table T(g, q, h), omitting empty cells, starts out as follows:
--------+------------------------------------------------------------
g\(q,h) | (1,0) (0,1) (0,2) ` ` ` (0,3) ` ` ` ` ` ` (0,4) ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` (2,2) ` ` ` (2,3) ` ` ` ` ` ` (2,4) (2,5)
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (3,3) ` ` ` ` ` ` ` ` `
========+============================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` ` ` ` ` ` 8 ` ` ` `
--------+------------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` 8 ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `12 ` ` ` ` ` ` ` `28 ` `16 `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
Row sums = A112869. Horizontal section sums = A061396.
		

Crossrefs

A112872 First differences of A061396.

Original entry on oeis.org

0, 1, 4, 14, 53, 208, 843, 3494, 14769, 63378, 275480, 1210213, 5365307, 23973429, 107853409, 488137798, 2221048540, 10153825751, 46617145752, 214844862927, 993601026038, 4609693262811, 21448031058110, 100058764135997
Offset: 0

Views

Author

Jon Awbrey, Oct 24 2005, based on calculations by Vladeta Jovovic & David W. Wilson

Keywords

Crossrefs

Previous Showing 21-28 of 28 results.