cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A371655 G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x))^2.

Original entry on oeis.org

1, 4, 32, 336, 4032, 52352, 716032, 10161408, 148229120, 2208921600, 33482670080, 514630230016, 8001860567040, 125640146354176, 1989285578473472, 31725578742464512, 509178657425326080, 8217766225008656384, 133287551280741351424, 2171450128344786403328
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(2*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 4^(n-k) * binomial(n,k) * binomial(2*n-k,n-1-2*k) for n > 0.
a(n) = 2^n * A100327(n). - Seiichi Manyama, Dec 26 2024

A378919 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)).

Original entry on oeis.org

1, 1, 5, 39, 355, 3532, 37206, 407861, 4604493, 53169811, 625067441, 7456004083, 90015754691, 1097834790182, 13505674728174, 167395320811562, 2088350145491232, 26203315734195937, 330460721192844017, 4186559092558049570, 53255890990455126082, 679954025388880445771
Offset: 0

Views

Author

Seiichi Manyama, Dec 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=-1, t=6, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A185967 Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 37, 26, 12, 4, 1, 146, 103, 49, 18, 5, 1, 602, 426, 207, 80, 25, 6, 1, 2563, 1818, 897, 359, 120, 33, 7, 1, 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1, 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1, 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Comments

Riordan array (g(x),xg(x)) where x*g(x) = (x+2)/3 - 2*sqrt(1+x+x^2) * cos(arccos(-(2x^3+3x^2+24x-2) / (2(1+x+x^2)^(3/2)))/3)/3.

Examples

			Triangle begins
  1,
  1, 1,
  3, 2, 1,
  10, 7, 3, 1,
  37, 26, 12, 4, 1,
  146, 103, 49, 18, 5, 1,
  602, 426, 207, 80, 25, 6, 1,
  2563, 1818, 897, 359, 120, 33, 7, 1,
  11181, 7946, 3966, 1628, 570, 170, 42, 8, 1,
  49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1,
  224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Production matrix is
  1, 1,
  2, 1, 1,
  3, 2, 1, 1,
  4, 3, 2, 1, 1,
  5, 4, 3, 2, 1, 1,
  6, 5, 4, 3, 2, 1, 1,
  7, 6, 5, 4, 3, 2, 1, 1,
  8, 7, 6, 5, 4, 3, 2, 1, 1,
  9, 8, 7, 6, 5, 4, 3, 2, 1, 1
  10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1
		

Crossrefs

Inverse of number triangle A185962.
First column is A109081. Row sums are A106228(n+1).

Programs

  • Maple
    T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)):
    seq(seq(simplify(T(n, k)), k=0..n),n=0..10); # Peter Luschny, Apr 02 2019
  • Mathematica
    T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 25 2019, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=(k+1)/(n+1)*sum(binomial(n+1,i)*binomial(n-k+i-1,n-k-i),i,0,n-k); /* Vladimir Kruchinin, Apr 02 2019 */

Formula

T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - Vladimir Kruchinin, Apr 02 2019
T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - Peter Luschny, Apr 02 2019

A253255 G.f. satisfies: A(x) = (1 - x^3*A(x)^3)^2 / (1 - x*A(x))^4.

Original entry on oeis.org

1, 4, 26, 202, 1731, 15780, 150117, 1473292, 14807363, 151638550, 1576616125, 16598802248, 176599380271, 1895767748376, 20508188211018, 223348309510194, 2446792909432683, 26944972018189698, 298111489130625351, 3312016395569631402, 36935315970911333184, 413308467174788509668
Offset: 0

Views

Author

Paul D. Hanna, May 31 2015

Keywords

Comments

Self-convolution of A253256.

Examples

			G.f.: A(x) = 1 + 4*x + 26*x^2 + 202*x^3 + 1731*x^4 + 15780*x^5 +...
where A(x) = (1 - x^3*A(x)^3)^2 / (1 - x*A(x))^4.
The logarithm begins:
log(A(x)) = 4*x + 36*x^2/2 + 358*x^3/3 + 3748*x^4/4 + 40404*x^5/5 + 443886*x^6/6 + 4941654*x^7/7 +...+ A168595(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=1); A = (1/x)*serreverse( x*(1-x)^4/(1-x^3)^2 +x^2*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {A168595(n) = sum(k=0, 2*n, binomial(2*n, k) * polcoeff((1+x+x^2)^n, k) )}
    {a(n) = local(A=1); A = exp( sum(k=1,n+1, A168595(k)*x^k/k) +x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} A168595(n)*x^n/n ), where A168595(n) = Sum_{k=0..2*n} binomial(n,k)*trinomial(n,k).
(2) A(x) = (1/x)*Series_Reversion( x*(1-x)^4/(1-x^3)^2 ).

A253256 G.f. satisfies: A(x) = (1 - x^3*A(x)^6) / (1 - x*A(x)^2)^2.

Original entry on oeis.org

1, 2, 11, 79, 647, 5727, 53367, 515802, 5123303, 51977485, 536320688, 5610909773, 59379328267, 634538481389, 6837466955193, 74210071037031, 810527496757335, 8901979424068377, 98253966680382102, 1089260346498608721, 12123804391067414676, 135427509933882292680, 1517725698030921469890
Offset: 0

Views

Author

Paul D. Hanna, May 31 2015

Keywords

Comments

Self-convolution yields A253255.

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 79*x^3 + 647*x^4 + 5727*x^5 + 53367*x^6 +...
where A(x) = (1 - x^3*A(x)^6) / (1 - x*A(x)^2)^2.
The logarithm begins:
log(A(x)) = 2*x + 18*x^2 + 179*x^3 + 1874*x^4 + 20202*x^5 + 221943*x^6 + 2470827*x^7/7 +...+ A168595(n)/2*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=1); A = sqrt( (1/x)*serreverse( x*(1-x)^4/(1-x^3)^2 +x^2*O(x^n))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {A168595(n) = sum(k=0, 2*n, binomial(2*n, k) * polcoeff((1+x+x^2)^n, k) )}
    {a(n) = local(A=1); A = exp( sum(k=1,n+1, A168595(k)/2 * x^k/k) +x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} A168595(n)/2 * x^n/n ), where A168595(n) = Sum_{k=0..2*n} binomial(n,k)*trinomial(n,k).
(2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x)^4/(1-x^3)^2 ) ).
(3) A(x) = sqrt( (1-x*A(x) - sqrt(1 - 6*x*A(x) - 3*x^2*A(x)^2)) / (2*x*(1+x*A(x))) ).

A333472 a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0

Views

Author

Peter Bala, Mar 23 2020

Keywords

Comments

Let F(x) = 1 + f(1)*x + f(2)*x^2 + ... be a power series with integer coefficients. The associated sequence u(n) := [x^n] F(x)^n is known to satisfy the Gauss congruences: u(n*p^k) == u(n*p^(k-1)) ( mod p^k ) for any prime p and positive integers n and k. For certain power series F(x), stronger congruences may hold. Examples include F(x) = (1 + x)^2, F(x) = 1/(1 - x) and F(x) = c(x), where c(x) is the o.g.f. of the Catalan numbers A000108. The associated sequences (with some differences of offset) are A000984, A001700 and A025174, respectively.
Here we take F(x) = c(x/(1 + x)) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + ... (cf. A001006 and A086246) and conjecture that the associated sequence a(n) = [x^n] ( c(x/(1 + x)) )^n satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for prime p >= 5 and positive integers n and k. Cf. A333473.
More generally, we conjecture that for any positive integer r and any integer s the sequence a(r,s;n) := [x^(r*n)] ( c(x/(1 + x)) )^(s*n) also satisfies the above congruences.
Note that the sequence b(n) := [x^n] c(x)^n = A025174(n) satisfies the stronger congruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. The sequence d(n) := [x^n] ( (1 + x)*c(x/(1 + x)) )^n = A333093(n) appears to satisfy the same congruences.

Examples

			Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
		

Crossrefs

Programs

  • Maple
    Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
    G := x -> Cat(x/(1+x)):
    H := (x,n) -> series(G(x)^n, x, 51):
    seq(coeff(H(x, n), x, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)

Formula

a(n) = [x^n] ( (1 + x - sqrt(1 - 2*x - 3*x^2)) / (2*x) )^n.
a(n) ~ sqrt(((9386 + 1026*sqrt(57))^(1/3) + (9386 - 1026*sqrt(57))^(1/3) - 19)/228) * (((1261 + 57*sqrt(57))^(1/3) + (1261 - 57*sqrt(57))^(1/3) + 10)/6)^n / sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2020

A365223 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 + x*A(x)^4).

Original entry on oeis.org

1, 1, 2, 3, -3, -50, -244, -714, -530, 8522, 63548, 259473, 535647, -1321437, -19094684, -103022071, -322370363, -142186810, 5537336460, 41081448638, 170484444654, 332739198585, -1241023311708, -15677607031084, -83737193010368, -255608722098225, -12706843586158
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(4*n-k+1, k)*binomial(n-1, n-k)/(4*n-k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*n-k+1,k) * binomial(n-1,n-k)/(4*n-k+1).

A379382 G.f. A(x) satisfies A(x) = sqrt( (1 + 2*x*A(x))/(1 - 2*x*A(x)^2) ).

Original entry on oeis.org

1, 2, 8, 48, 336, 2560, 20608, 172416, 1484288, 13062144, 116977664, 1062600704, 9767067648, 90673700864, 848971661312, 8007542571008, 76014137180160, 725681289822208, 6962697126019072, 67105309925048320, 649362348326256640, 6306663216709632000
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^n*sum(k=0, n, binomial(n/2+3*k/2-1/2, k)*binomial(n/2+k/2+1/2, n-k)/(n+k+1));

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(n/2+3*k/2-1/2,k) * binomial(n/2+k/2+1/2,n-k)/(n+k+1).
a(n) = 2^n * A106228(n).
Previous Showing 31-38 of 38 results.