cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A124319 Semiprime(3almostprime(n))-3almostprime(semiprime(n)). Commutator[A001358, A014612] at n.

Original entry on oeis.org

2, 6, 7, 12, 16, 17, -11, 24, 23, 20, -1, 10, 48, 40, 39, 26, 14, 4, -1, 51, 60, 48, 48, 43, 31, 39, 22, 15, 37, 32, 39, 60, 90, 82, 68, 63, 64, 58, 66, 51, 53, 48, 28, 34, 42, 24, 28, 39, 87, 96, 106, 124, 124, 135, 131, 131, 88, 91, 72, 96, 103, 83, 83, 81, 91
Offset: 1

Views

Author

Jonathan Vos Post, Oct 26 2006

Keywords

Examples

			a(1) = semiprime(3almostprime(1)) - 3almostprime(semiprime(1)) = 22 - 20 = 2.
a(2) = semiprime(3almostprime(2)) - 3almostprime(semiprime(2)) = 34 - 28 = 6.
a(3) = semiprime(3almostprime(3)) - 3almostprime(semiprime(3)) = 51 - 44 = 7.
a(4) = semiprime(3almostprime(4)) - 3almostprime(semiprime(4)) = 57 - 45 = 12.
a(7) = semiprime(3almostprime(7)) - 3almostprime(semiprime(7)) = 87 - 98 = -11, which is the first negative value in the commutators we have seen in these related set of sequences, exposing an incorrect assumption.
		

Crossrefs

Cf. A124317 Semiprimes indexed by 3-almost primes. A124318 3-almost primes indexed by semiprimes. A124319 semiprime(3almostprime(n)) - 3almostprime(semiprime(n)). A124308 Primes indexed by 5-almost primes. A124309 5-almost primes indexed by primes. A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes = A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040, A001358] at n.

Programs

  • Mathematica
    p[k_] := p[k] = Select[Range[1000], PrimeOmega[#] == k &]; p[2][[ Take[p[3], 70]]] - p[3][[Take[p[2], 70]]] (* Giovanni Resta, Jun 13 2016 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A124319(n):
        def f(x): return int(x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        def g(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A001358(n):
            m, k = n, g(n)+n
            while m != k:
                m, k = k, g(k)+n
            return m
        m, k = n, f(n)+n
        while m != k:
            m, k = k, f(k)+n
        r, k = (p:=A001358(n)), f(p)+p
        while r != k:
            r, k = k, f(k)+p
        return A001358(m)-r # Chai Wah Wu, Aug 17 2024

Extensions

a(18) corrected and a(22)-a(65) from Giovanni Resta, Jun 13 2016

A340104 Products of distinct primes of nonprime index (A007821).

Original entry on oeis.org

1, 2, 7, 13, 14, 19, 23, 26, 29, 37, 38, 43, 46, 47, 53, 58, 61, 71, 73, 74, 79, 86, 89, 91, 94, 97, 101, 103, 106, 107, 113, 122, 131, 133, 137, 139, 142, 146, 149, 151, 158, 161, 163, 167, 173, 178, 181, 182, 193, 194, 197, 199, 202, 203, 206, 214, 223, 226
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding prime indices of prime indices begins:
     1: {}              58: {{},{1,3}}        113: {{1,2,3}}
     2: {{}}            61: {{1,2,2}}         122: {{},{1,2,2}}
     7: {{1,1}}         71: {{1,1,3}}         131: {{1,1,1,1,1}}
    13: {{1,2}}         73: {{2,4}}           133: {{1,1},{1,1,1}}
    14: {{},{1,1}}      74: {{},{1,1,2}}      137: {{2,5}}
    19: {{1,1,1}}       79: {{1,5}}           139: {{1,7}}
    23: {{2,2}}         86: {{},{1,4}}        142: {{},{1,1,3}}
    26: {{},{1,2}}      89: {{1,1,1,2}}       146: {{},{2,4}}
    29: {{1,3}}         91: {{1,1},{1,2}}     149: {{3,4}}
    37: {{1,1,2}}       94: {{},{2,3}}        151: {{1,1,2,2}}
    38: {{},{1,1,1}}    97: {{3,3}}           158: {{},{1,5}}
    43: {{1,4}}        101: {{1,6}}           161: {{1,1},{2,2}}
    46: {{},{2,2}}     103: {{2,2,2}}         163: {{1,8}}
    47: {{2,3}}        106: {{},{1,1,1,1}}    167: {{2,6}}
    53: {{1,1,1,1}}    107: {{1,1,4}}         173: {{1,1,1,3}}
		

Crossrefs

These primes (of nonprime index) are listed by A007821.
The non-strict version is A320628, with odd case A320629.
The odd case is A340105.
The prime instead of nonprime version:
primes: A006450
products: A076610
strict: A302590
The semiprime instead of nonprime version:
primes: A106349
products: A339112
strict: A340020
The squarefree semiprime instead of nonprime version:
strict: A309356
primes: A322551
products: A339113
A056239 gives the sum of prime indices, which are listed by A112798.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A330944 counts nonprime prime indices.
A330945 lists numbers with a nonprime prime index (nonprime case: A330948).
A339561 lists products of distinct squarefree semiprimes (A339560).
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeQ[PrimePi[p]]]&]

Formula

Equals A005117 /\ A320628.

A340105 Odd products of distinct primes of nonprime index (A007821).

Original entry on oeis.org

1, 7, 13, 19, 23, 29, 37, 43, 47, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311, 313, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding sets of multisets begins:
     1: {}              91: {{1,1},{1,2}}      173: {{1,1,1,3}}
     7: {{1,1}}         97: {{3,3}}            181: {{1,2,4}}
    13: {{1,2}}        101: {{1,6}}            193: {{1,1,5}}
    19: {{1,1,1}}      103: {{2,2,2}}          197: {{2,2,3}}
    23: {{2,2}}        107: {{1,1,4}}          199: {{1,9}}
    29: {{1,3}}        113: {{1,2,3}}          203: {{1,1},{1,3}}
    37: {{1,1,2}}      131: {{1,1,1,1,1}}      223: {{1,1,1,1,2}}
    43: {{1,4}}        133: {{1,1},{1,1,1}}    227: {{4,4}}
    47: {{2,3}}        137: {{2,5}}            229: {{1,3,3}}
    53: {{1,1,1,1}}    139: {{1,7}}            233: {{2,7}}
    61: {{1,2,2}}      149: {{3,4}}            239: {{1,1,6}}
    71: {{1,1,3}}      151: {{1,1,2,2}}        247: {{1,2},{1,1,1}}
    73: {{2,4}}        161: {{1,1},{2,2}}      251: {{1,2,2,2}}
    79: {{1,5}}        163: {{1,8}}            257: {{3,5}}
    89: {{1,1,1,2}}    167: {{2,6}}            259: {{1,1},{1,1,2}}
		

Crossrefs

These primes (of nonprime index) are listed by A007821.
The non-strict version is A320629, with not necessarily odd version A320628.
The not necessarily odd version is A340104.
The prime instead of odd nonprime version:
primes: A006450
products: A076610
strict: A302590
The squarefree semiprime instead of odd nonprime version:
strict: A309356
primes: A322551
products: A339113
The semiprime instead of odd nonprime version:
primes: A106349
products: A339112
strict: A340020
A001358 lists semiprimes.
A056239 gives the sum of prime indices, which are listed by A112798.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A330944 counts nonprime prime indices.
A330945 lists numbers with a nonprime prime index (nonprime case: A330948).
A339561 lists products of distinct squarefree semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeQ[PrimePi[p]]]&]

Formula

A368728 Numbers whose prime indices are 1, prime, or semiprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 75
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

These are products of primes indexed by elements of A037143.
For just primes we have A076610, strict A302590.
For just semiprimes we have A339112, strict A340020.
For squarefree semiprimes we have A339113, strict A309356.
The odd case is A368729, strict A340019.
The complement is A368833.
A000607 counts partitions into primes, A034891 with ones allowed.
A001358 lists semiprimes, squarefree A006881.
A006450, A106349, A322551, A368732 list selected primes.
A056239 adds up prime indices, row sums of A112798.
A101048 counts partitions into semiprimes.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@Length/@prix/@prix[#]<=2&]

Formula

Closed under multiplication.

A368729 Numbers whose prime indices are prime or semiprime. MM-numbers of labeled multigraphs with loops and half-loops without isolated (uncovered) nodes.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 39, 41, 43, 45, 47, 49, 51, 55, 59, 63, 65, 67, 69, 73, 75, 77, 79, 81, 83, 85, 87, 91, 93, 97, 99, 101, 105, 109, 115, 117, 119, 121, 123, 125, 127, 129, 135, 137, 139, 141, 143, 145, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with the corresponding multigraphs begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  33: {{1},{3}}
  35: {{2},{1,1}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  45: {{1},{1},{2}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
		

Crossrefs

In the unlabeled case these multigraphs are counted by A320663.
These are products of primes indexed by elements of A037143 greater than 1.
For just primes we have A076610, squarefree A302590.
For just semiprimes we have A339112, squarefree A340020.
For just half-loops we have A340019.
This is the odd case of A368728, complement A368833.
A000607 counts partitions into primes, with ones allowed A034891.
A001358 lists semiprimes, squarefree A006881.
A006450, A106349, A322551, A368732 list selected primes.
A056239 adds up prime indices, row sums of A112798.
A101048 counts partitions into semiprimes.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[#]&&Max@@Length/@prix/@prix[#]<=2&]

A368732 Primes whose index is one, another prime number, or a semiprime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 41, 43, 47, 59, 67, 73, 79, 83, 97, 101, 109, 127, 137, 139, 149, 157, 163, 167, 179, 191, 199, 211, 227, 233, 241, 257, 269, 271, 277, 283, 293, 313, 331, 347, 353, 367, 373, 389, 401, 421, 431, 439, 443, 449, 461, 467, 487
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2024

Keywords

Crossrefs

For just primes we have A006450, products A076610, strict A302590.
These indices are A037143.
For just semiprimes we have A106349, products A339112, strict A340020.
Products of these primes are A368728, odd A368729, odd strict A340019.
Products of the complementary primes are A368833.
A000607 counts partitions into primes, with ones allowed A034891.
A001358 lists semiprimes, squarefree A006881.
A056239 adds up prime indices, row sums of A112798.
A101048 counts partitions into semiprimes.
A322551 lists primes of squarefree semiprime index.

Programs

  • Mathematica
    Prime/@Select[Range[100],PrimeOmega[#]<=2&]

A368833 Numbers whose prime indices are not 1, prime, or semiprime.

Original entry on oeis.org

19, 37, 38, 53, 57, 61, 71, 74, 76, 89, 95, 103, 106, 107, 111, 113, 114, 122, 131, 133, 142, 148, 151, 152, 159, 171, 173, 178, 181, 183, 185, 190, 193, 197, 206, 209, 212, 213, 214, 222, 223, 226, 228, 229, 239, 244, 247, 251, 259, 262, 263, 265, 266, 267
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   19: {8}
   37: {12}
   38: {1,8}
   53: {16}
   57: {2,8}
   61: {18}
   71: {20}
   74: {1,12}
   76: {1,1,8}
   89: {24}
   95: {3,8}
  103: {27}
  106: {1,16}
  107: {28}
  111: {2,12}
  113: {30}
  114: {1,2,8}
  122: {1,18}
  131: {32}
  133: {4,8}
  142: {1,20}
  148: {1,1,12}
		

Crossrefs

These are non-products of primes indexed by elements of A037143.
The complement for just primes is A076610, strict A302590.
The complement for just semiprimes is A339112, strict A340020.
The complement for just squarefree semiprimes is A339113, strict A309356.
The complement is A368728.
The complement for just primes and semiprimes is A368729, strict A340019.
A000607 counts partitions into primes, with ones allowed A034891.
A001358 lists semiprimes, squarefree A006881.
A006450, A106349, A322551, A368732 list selected primes.
A056239 adds up prime indices, row sums of A112798.
A101048 counts partitions into semiprimes.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], Max@@PrimeOmega/@prix[#]>2&]

A322552 MM-numbers of triangles.

Original entry on oeis.org

17719, 40807, 140699, 185803, 219271, 421031, 511219, 570011, 588787, 897689, 916777, 1321433, 1581827, 1654823, 1769609, 1854983, 2028181, 2358773, 2456737, 2943343, 3641501, 3705221, 3890389, 3902981, 4186793, 4807489, 5176613, 5263759, 5693197, 6308857, 6515111, 6566717
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
Sequence consists of terms of the form prime(p*q) * prime(p*r) * prime(q*r), with p, q, and r distinct primes. - Charlie Neder, Dec 23 2018

Examples

			The sequence of triangles whose MM-numbers belong to the sequence begins:
   17719: {{1,2},{1,3},{2,3}}
   40807: {{1,2},{1,4},{2,4}}
  140699: {{1,2},{1,5},{2,5}}
  185803: {{1,3},{1,4},{3,4}}
  219271: {{1,2},{1,6},{2,6}}
  421031: {{1,2},{1,7},{2,7}}
  511219: {{2,3},{2,4},{3,4}}
  570011: {{1,2},{1,8},{2,8}}
  588787: {{1,3},{1,5},{3,5}}
  897689: {{1,2},{1,9},{2,9}}
  916777: {{1,3},{1,6},{3,6}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100000],And[SquareFreeQ[#],PrimeOmega[#]==3,And@@(SquareFreeQ[#]&&PrimeOmega[#]==2&/@primeMS[#]),SameQ[##,2]&@@Length/@Split[Sort[Join@@primeMS/@primeMS[#]]]]&]

Extensions

a(12)-a(32) from Charlie Neder, Dec 27 2018
Previous Showing 21-28 of 28 results.