cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 185 results. Next

A335489 Number of strict permutations of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 6, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 6, 1, 0, 2, 6, 1, 0, 1, 2, 0, 0, 2, 6, 1, 0, 0, 2, 1, 0, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the number of (1,1)-avoiding permutations of the prime indices of n.

Crossrefs

Positions of first appearances are A002110 with 2 replaced by 4.
Permutations of prime indices are counted by A008480.
The contiguous version is A335451.
Anti-run permutations of prime indices are counted by A335452.
(1,1,1)-avoiding permutations of prime indices are counted by A335511.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,_,x_,_}]&]],{n,100}]

Formula

If n is squarefree, a(n) = A001221(n)!; otherwise a(n) = 0.
a(n != 4) = A281188(n); a(4) = 0.

A374744 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 22, 23, 31, 32, 33, 34, 35, 36, 37, 39, 42, 43, 45, 46, 47, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 79, 85, 86, 87, 90, 91, 93, 94, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  11: (2,1,1)
  15: (1,1,1,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  31: (1,1,1,1,1)
		

Crossrefs

Other types of runs and their counts: A272919 (A000005), A374519 (A374517), A374685 (A374686), A374759 (A374760).
The opposite is A374633, counted by A374631.
For distinct (instead of identical) leaders we have A374701, count A374743.
Positions of constant rows in A374740, opposite A374629, cf. A374630.
Compositions of this type are counted by A374742.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],GreaterEqual]&]

A374748 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly decreasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 3, 2, 0, 1, 2, 6, 4, 3, 0, 1, 3, 9, 8, 7, 4, 0, 1, 3, 13, 15, 16, 11, 5, 0, 1, 4, 17, 24, 32, 28, 16, 6, 0, 1, 4, 23, 36, 58, 58, 44, 24, 8, 0, 1, 5, 28, 52, 96, 115, 100, 71, 34, 10, 0, 1, 5, 35, 72, 151, 203, 211, 176, 109, 49, 12
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   1   2
   0   1   2   3   2
   0   1   2   6   4   3
   0   1   3   9   8   7   4
   0   1   3  13  15  16  11   5
   0   1   4  17  24  32  28  16   6
   0   1   4  23  36  58  58  44  24   8
   0   1   5  28  52  96 115 100  71  34  10
   0   1   5  35  72 151 203 211 176 109  49  12
Row n = 6 counts the following compositions:
  .  (111111)  (222)    (33)     (42)    (51)    (6)
               (2211)   (321)    (411)   (141)   (15)
               (21111)  (3111)   (132)   (114)   (24)
                        (1221)   (1311)  (312)   (123)
                        (1122)   (1131)  (231)
                        (12111)  (1113)  (213)
                        (11211)  (2121)  (1212)
                        (11121)  (2112)
                        (11112)
		

Crossrefs

Column n = k is A000009.
Column k = 2 is A004526.
Row-sums are A011782.
For length instead of sum we have A238343.
The opposite rank statistic is A374630, row-sums of A374629.
Column k = 3 is A374702.
The center n = 2k is A374703.
The corresponding rank statistic is A374741 row-sums of A374740.
Types of runs (instead of weakly decreasing):
- For leaders of constant runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of strictly decreasing runs we have A374766.
Types of run-leaders:
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742, ranks A374744.
- For distinct leaders we have A374743, ranks A374701.
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==k&]],{n,0,15},{k,0,n}]

A375124 Weakly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 2, 6, 1, 8, 4, 2, 2, 12, 6, 6, 1, 16, 8, 4, 4, 20, 2, 10, 2, 24, 12, 6, 6, 12, 6, 6, 1, 32, 16, 8, 8, 4, 4, 18, 4, 40, 20, 2, 2, 20, 10, 10, 2, 48, 24, 12, 12, 52, 6, 26, 6, 24, 12, 6, 6, 12, 6, 6, 1, 64, 32, 16, 16, 8, 8, 34, 8, 72, 4, 4, 4, 36
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly decreasing runs in the n-th composition in standard order.
The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374701, counted by A374743.
Positions of elements of A272919 are A374744, counted by A374742.
Ranks of rows of A374740.
The opposite version is A375123.
The strict version is A375126.
The strict opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124765(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374741(n).

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).

A375126 Strictly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 5, 12, 6, 14, 15, 16, 8, 4, 9, 20, 10, 10, 11, 24, 12, 26, 13, 28, 14, 30, 31, 32, 16, 8, 17, 36, 4, 18, 19, 40, 20, 42, 21, 20, 10, 22, 23, 48, 24, 12, 25, 52, 26, 26, 27, 56, 28, 58, 29, 60, 30, 62, 63, 64, 32, 16, 33, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly decreasing runs in the n-th composition in standard order.
The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374767, counted by A374761.
Positions of elements of A272919 are A374759, counted by A374760.
Ranks of rows of A374757 (row-sums A374758).
The weak opposite version is A375123.
The weak version is A375124.
The opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Greater]],{n,0,100}]

Formula

A000120(a(n)) = A124769(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374758(n).

A375127 The anti-run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 1, 7, 8, 4, 10, 5, 1, 1, 3, 15, 16, 8, 4, 9, 2, 10, 2, 11, 1, 1, 6, 3, 3, 3, 7, 31, 32, 16, 8, 17, 36, 4, 4, 19, 2, 2, 42, 21, 2, 2, 5, 23, 1, 1, 1, 3, 1, 6, 1, 7, 3, 3, 14, 7, 7, 7, 15, 63, 64, 32, 16, 33, 8, 8, 8, 35, 4, 36, 18, 9, 4, 4, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of anti-runs of the n-th composition in standard order.
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2). This is the 42nd composition in standard order, so a(346) = 42.
		

Crossrefs

Positions of elements of A233564 are A374638, counted by A374518.
Positions of elements of A272919 are A374519, counted by A374517.
Ranks of rows of A374515.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transform is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],UnsameQ]],{n,0,100}]

Formula

A000120(a(n)) = A333381(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374516(n).

A346703 Product of primes at odd positions in the weakly increasing list (with multiplicity) of prime factors of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 4, 3, 2, 11, 6, 13, 2, 3, 4, 17, 6, 19, 10, 3, 2, 23, 4, 5, 2, 9, 14, 29, 10, 31, 8, 3, 2, 5, 6, 37, 2, 3, 4, 41, 14, 43, 22, 15, 2, 47, 12, 7, 10, 3, 26, 53, 6, 5, 4, 3, 2, 59, 6, 61, 2, 21, 8, 5, 22, 67, 34, 3, 14, 71, 12, 73, 2, 15, 38
Offset: 1

Views

Author

Gus Wiseman, Aug 08 2021

Keywords

Examples

			The prime factors of 108 are (2,2,3,3,3), with odd bisection (2,3,3), with product 18, so a(108) = 18.
The prime factors of 720 are (2,2,2,2,3,3,5), with odd bisection (2,2,3,5), with product 60, so a(720) = 60.
		

Crossrefs

Positions of 2's are A001747.
Positions of primes are A037143 (complement: A033942).
The even reverse version appears to be A329888.
Positions of first appearances are A342768.
The sum of prime indices of a(n) is A346697(n), reverse: A346699.
The reverse version is A346701.
The even version is A346704.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A209281 (shifted) adds up the odd bisection of standard compositions.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346633 adds up the even bisection of standard compositions.
A346698 gives the sum of the even bisection of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.

Programs

  • Mathematica
    Table[Times@@First/@Partition[Append[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]],0],2],{n,100}]

Formula

a(n) * A346704(n) = n.
A056239(a(n)) = A346697(n).

A348377 Number of non-alternating compositions of n, excluding twins (x,x).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 45, 98, 208, 436, 906, 1861, 3803, 7731, 15659, 31628, 63747, 128257, 257722, 517338, 1037652, 2079983, 4167325, 8346203, 16710572, 33449694, 66944254, 133959020, 268028868, 536231902, 1072737537, 2145905284, 4292486690, 8586035992
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2021

Keywords

Comments

First differs from A348382 at a(6) = 19, A348382(6) = 17. The two non-alternating non-twin compositions of 6 that are not an anti-run are (1,2,3) and (3,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (1,1,1)  (1,1,2)    (1,1,3)      (1,1,4)
           (2,1,1)    (1,2,2)      (1,2,3)
           (1,1,1,1)  (2,2,1)      (2,2,2)
                      (3,1,1)      (3,2,1)
                      (1,1,1,2)    (4,1,1)
                      (1,1,2,1)    (1,1,1,3)
                      (1,2,1,1)    (1,1,2,2)
                      (2,1,1,1)    (1,1,3,1)
                      (1,1,1,1,1)  (1,2,2,1)
                                   (1,3,1,1)
                                   (2,1,1,2)
                                   (2,2,1,1)
                                   (3,1,1,1)
                                   (1,1,1,1,2)
                                   (1,1,1,2,1)
                                   (1,1,2,1,1)
                                   (1,2,1,1,1)
                                   (2,1,1,1,1)
                                   (1,1,1,1,1,1)
		

Crossrefs

The version for patterns is A000670(n) - A344605(n).
Non-twin compositions are counted by A051049.
The complement is counted by A344604.
An unordered version is A344654.
The complement is ranked by A345167 \/ A007582.
These compositions are ranked by A345168 \ A007582.
Including twins gives A345192, complement A025047.
The version for factorizations is A347706, or A348380 with twins.
The non-anti-run case is A348382.
A001250 counts alternating permutations.
A011782 counts compositions, strict A032020.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A261983 counts non-anti-run compositions, complement A003242.
A325535 counts inseparable partitions, ranked by A335448.
A344614 counts compositions avoiding (1,2,3) and (3,2,1) adjacent.
A345165 = partitions with no alternating permutations, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

For n > 0, a(n) = A345192(n) - 1 if n is even; otherwise A345192(n).

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A374636 Number of integer compositions of n whose leaders of maximal weakly increasing runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 10, 28, 72, 178, 425, 985, 2237, 4999, 11016, 24006, 51822, 110983, 236064, 499168, 1050118, 2199304, 4587946, 9537506, 19765213, 40847186, 84205453, 173198096, 355520217, 728426569, 1489977348, 3043054678, 6206298312, 12641504738
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed pattern 1-32, ranked by A375137.
Also the number of integer compositions of n matching the dashed pattern 23-1, ranked by A375138.

Examples

			- The maximal weakly increasing runs of y = (1,1,3,2,1) are ((1,1,3),(2),(1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (1,3,2,1,1) are ((1,3),(2),(1,1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (2,3,1,1,1) are ((2,3),(1,1,1)) with leaders (2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,3,2,1) are ((2,3),(2),(1)) with leaders (2,2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,1,3,1,1) are ((2),(1,3),(1,1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
- The maximal weakly increasing runs of y = (2,1,1,3,1) are ((2),(1,1,3),(1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
The a(0) = 0 through a(8) = 10 compositions:
  .  .  .  .  .  .  (132)  (142)   (143)
                           (1132)  (152)
                           (1321)  (1142)
                                   (1232)
                                   (1322)
                                   (1421)
                                   (2132)
                                   (11132)
                                   (11321)
                                   (13211)
		

Crossrefs

The reverse version is the same.
For leaders of identical runs we have A056823.
The complement is counted by A189076.
The non-dashed version is A335514.
For leaders of anti-runs we have A374699, complement A374682.
For weakly decreasing runs we have the complement of A374747.
For leaders of strictly increasing runs we have A375135, complement A374697.
These compositions are ranked by A375137, reverse A375138.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,LessEqual]&]],{n,0,15}]
    (* or *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,y_,z_,_,x_,_}/;x
    				

Formula

a(n) = A011782(n) - A189076(n). - Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025
Previous Showing 101-110 of 185 results. Next