A340386
Heinz numbers of integer partitions with an odd number of parts, the greatest of which is odd.
Original entry on oeis.org
2, 5, 8, 11, 17, 20, 23, 30, 31, 32, 41, 44, 45, 47, 50, 59, 66, 67, 68, 73, 75, 80, 83, 92, 97, 99, 102, 103, 109, 110, 120, 124, 125, 127, 128, 137, 138, 149, 153, 154, 157, 164, 165, 167, 170, 176, 179, 180, 186, 188, 191, 197, 200, 207, 211, 227, 230
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
2: (1) 59: (17) 120: (3,2,1,1,1)
5: (3) 66: (5,2,1) 124: (11,1,1)
8: (1,1,1) 67: (19) 125: (3,3,3)
11: (5) 68: (7,1,1) 127: (31)
17: (7) 73: (21) 128: (1,1,1,1,1,1,1)
20: (3,1,1) 75: (3,3,2) 137: (33)
23: (9) 80: (3,1,1,1,1) 138: (9,2,1)
30: (3,2,1) 83: (23) 149: (35)
31: (11) 92: (9,1,1) 153: (7,2,2)
32: (1,1,1,1,1) 97: (25) 154: (5,4,1)
41: (13) 99: (5,2,2) 157: (37)
44: (5,1,1) 102: (7,2,1) 164: (13,1,1)
45: (3,2,2) 103: (27) 165: (5,3,2)
47: (15) 109: (29) 167: (39)
50: (3,3,1) 110: (5,3,1) 170: (7,3,1)
Note: Heinz numbers are given in parentheses below.
The case of odd length only is
A026424.
The case of odd maximum only is
A244991.
These partitions are counted by
A340385.
The version for factorizations is
A340607.
A027193 counts partitions of odd length, or of odd maximum.
A106529 lists numbers with Omega equal to maximum prime index.
A339890 counts factorizations of odd length.
A340102 counts odd-length factorizations into odd factors.
Cf.
A001222,
A027187,
A056239,
A112798,
A236914,
A258116,
A300063,
A324522,
A340608,
A340788,
A340831.
A340597
Numbers with an alt-balanced factorization.
Original entry on oeis.org
4, 12, 18, 27, 32, 48, 64, 72, 80, 96, 108, 120, 128, 144, 160, 180, 192, 200, 240, 256, 270, 288, 300, 320, 360, 384, 400, 405, 432, 448, 450, 480, 500, 540, 576, 600, 640, 648, 672, 675, 720, 750, 768, 800, 864, 896, 900, 960, 972, 1000, 1008, 1024, 1080
Offset: 1
The sequence of terms together with their prime signatures begins:
4: (2) 180: (2,2,1) 450: (1,2,2)
12: (2,1) 192: (6,1) 480: (5,1,1)
18: (1,2) 200: (3,2) 500: (2,3)
27: (3) 240: (4,1,1) 540: (2,3,1)
32: (5) 256: (8) 576: (6,2)
48: (4,1) 270: (1,3,1) 600: (3,1,2)
64: (6) 288: (5,2) 640: (7,1)
72: (3,2) 300: (2,1,2) 648: (3,4)
80: (4,1) 320: (6,1) 672: (5,1,1)
96: (5,1) 360: (3,2,1) 675: (3,2)
108: (2,3) 384: (7,1) 720: (4,2,1)
120: (3,1,1) 400: (4,2) 750: (1,1,3)
128: (7) 405: (4,1) 768: (8,1)
144: (4,2) 432: (4,3) 800: (5,2)
160: (5,1) 448: (6,1) 864: (5,3)
For example, there are two alt-balanced factorizations of 480, namely (2*3*4*4*5) and (2*2*2*2*5*6), so 480 in the sequence.
Numbers with a balanced factorization are
A100959.
These factorizations are counted by
A340599.
The twice-balanced version is
A340657.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
Other balance-related sequences:
-
A010054 counts balanced strict partitions.
-
A047993 counts balanced partitions.
-
A098124 counts balanced compositions.
-
A106529 lists Heinz numbers of balanced partitions.
-
A340596 counts co-balanced factorizations.
-
A340598 counts balanced set partitions.
-
A340600 counts unlabeled balanced multiset partitions.
-
A340653 counts balanced factorizations.
-
A340654 counts cross-balanced factorizations.
-
A340655 counts twice-balanced factorizations.
Cf.
A006141,
A064174,
A117409,
A200750,
A303975,
A324518,
A324522,
A325134,
A340607,
A340608,
A340611,
A340656.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],Select[facs[#],Length[#]==Max[#]&]!={}&]
A340692
Number of integer partitions of n of odd rank.
Original entry on oeis.org
0, 0, 2, 0, 4, 2, 8, 4, 14, 12, 26, 22, 44, 44, 76, 78, 126, 138, 206, 228, 330, 378, 524, 602, 814, 950, 1252, 1466, 1900, 2238, 2854, 3362, 4236, 5006, 6232, 7356, 9078, 10720, 13118, 15470, 18800, 22152, 26744, 31456, 37772, 44368, 53002, 62134, 73894
Offset: 0
The a(0) = 0 through a(9) = 12 partitions (empty columns indicated by dots):
. . (2) . (4) (32) (6) (52) (8) (54)
(11) (31) (221) (33) (421) (53) (72)
(211) (51) (3211) (71) (432)
(1111) (222) (22111) (422) (441)
(411) (431) (621)
(3111) (611) (3222)
(21111) (3221) (3321)
(111111) (3311) (5211)
(5111) (22221)
(22211) (42111)
(41111) (321111)
(311111) (2211111)
(2111111)
(11111111)
Note: A-numbers of Heinz-number sequences are in parentheses below.
The Heinz numbers of these partitions are (
A340603).
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
- Odd -
A026804 counts partitions whose least part is odd.
A339890 counts factorizations of odd length.
Cf.
A003114,
A006141,
A027187,
A039900,
A067538,
A096401,
A117409,
A143773,
A324518,
A325134,
A340828,
A340854/
A340855.
-
Table[Length[Select[IntegerPartitions[n],OddQ[Max[#]-Length[#]]&]],{n,0,30}]
A340608
The number of prime factors of n (A001222) is relatively prime to the maximum prime index of n (A061395).
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 37, 40, 41, 42, 43, 44, 46, 47, 48, 51, 53, 55, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 93, 94, 97, 98, 99
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1} 22: {1,5} 44: {1,1,5}
3: {2} 23: {9} 46: {1,9}
4: {1,1} 25: {3,3} 47: {15}
5: {3} 27: {2,2,2} 48: {1,1,1,1,2}
7: {4} 28: {1,1,4} 51: {2,7}
8: {1,1,1} 29: {10} 53: {16}
10: {1,3} 31: {11} 55: {3,5}
11: {5} 32: {1,1,1,1,1} 59: {17}
12: {1,1,2} 33: {2,5} 60: {1,1,2,3}
13: {6} 34: {1,7} 61: {18}
15: {2,3} 37: {12} 62: {1,11}
16: {1,1,1,1} 40: {1,1,1,3} 63: {2,2,4}
17: {7} 41: {13} 64: {1,1,1,1,1,1}
18: {1,2,2} 42: {1,2,4} 66: {1,2,5}
19: {8} 43: {14} 67: {19}
Note: Heinz numbers are given in parentheses below.
These are the Heinz numbers of the partitions counted by
A200750.
A006141 counts partitions whose length equals their minimum (
A324522).
A061395 selects the maximum prime index.
A112798 lists the prime indices of each positive integer.
A259936 counts singleton or pairwise coprime factorizations.
A326849 counts partitions whose sum divides length times maximum (
A326848).
A340784
Heinz numbers of even-length integer partitions of even numbers.
Original entry on oeis.org
1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
1: () 57: (8,2) 118: (17,1)
4: (1,1) 62: (11,1) 121: (5,5)
9: (2,2) 64: (1,1,1,1,1,1) 129: (14,2)
10: (3,1) 81: (2,2,2,2) 133: (8,4)
16: (1,1,1,1) 82: (13,1) 134: (19,1)
21: (4,2) 84: (4,2,1,1) 136: (7,1,1,1)
22: (5,1) 85: (7,3) 144: (2,2,1,1,1,1)
25: (3,3) 87: (10,2) 146: (21,1)
34: (7,1) 88: (5,1,1,1) 155: (11,3)
36: (2,2,1,1) 90: (3,2,2,1) 156: (6,2,1,1)
39: (6,2) 91: (6,4) 159: (16,2)
40: (3,1,1,1) 94: (15,1) 160: (3,1,1,1,1,1)
46: (9,1) 100: (3,3,1,1) 166: (23,1)
49: (4,4) 111: (12,2) 169: (6,6)
55: (5,3) 115: (9,3) 183: (18,2)
Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is
A056798.
These partitions are counted by
A236913.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A034008 counts compositions of even length.
A339846 counts factorizations of even length.
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Cf.
A026424,
A257541,
A300272,
A326837,
A326845,
A340385 (
A340386),
A340604,
A353331 (characteristic function),
A353332,
A353333,
A353334.
Squares (
A000290) is a subsequence.
Not a subsequence of
A329609 (30 is the first term of
A329609 not occurring here, and 210 is the first term here not present in
A329609).
Positions of even terms in
A373381.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
-
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022
A324519
Numbers > 1 where the minimum prime index equals the number of prime factors minus the number of distinct prime factors.
Original entry on oeis.org
4, 12, 18, 20, 27, 28, 44, 50, 52, 60, 68, 76, 84, 90, 92, 98, 116, 124, 126, 132, 135, 140, 148, 150, 156, 164, 172, 188, 189, 198, 204, 212, 220, 225, 228, 234, 236, 242, 244, 260, 268, 276, 284, 292, 294, 297, 306, 308, 316, 332, 338, 340, 342, 348, 350
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1}
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
27: {2,2,2}
28: {1,1,4}
44: {1,1,5}
50: {1,3,3}
52: {1,1,6}
60: {1,1,2,3}
68: {1,1,7}
76: {1,1,8}
84: {1,1,2,4}
90: {1,2,2,3}
92: {1,1,9}
98: {1,4,4}
-
Select[Range[2,100],With[{f=FactorInteger[#]},PrimePi[f[[1,1]]]==Total[Last/@f]-Length[f]]&]
A325233
Heinz numbers of integer partitions with Dyson rank 1.
Original entry on oeis.org
3, 10, 15, 25, 28, 42, 63, 70, 88, 98, 105, 132, 147, 175, 198, 208, 220, 245, 297, 308, 312, 330, 343, 462, 468, 484, 495, 520, 544, 550, 693, 702, 726, 728, 770, 780, 816, 825, 1053, 1078, 1089, 1092, 1144, 1155, 1170, 1210, 1216, 1224, 1300, 1352, 1360
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2}
10: {1,3}
15: {2,3}
25: {3,3}
28: {1,1,4}
42: {1,2,4}
63: {2,2,4}
70: {1,3,4}
88: {1,1,1,5}
98: {1,4,4}
105: {2,3,4}
132: {1,1,2,5}
147: {2,4,4}
175: {3,3,4}
198: {1,2,2,5}
208: {1,1,1,1,6}
220: {1,1,3,5}
245: {3,4,4}
297: {2,2,2,5}
308: {1,1,4,5}
Cf.
A001222,
A047993,
A056239,
A061395,
A063995,
A101198,
A106529,
A112798,
A257990,
A263297,
A325225,
A325234,
A325235.
A326845
Sum times maximum of the integer partition with Heinz number n.
Original entry on oeis.org
0, 1, 4, 2, 9, 6, 16, 3, 8, 12, 25, 8, 36, 20, 15, 4, 49, 10, 64, 15, 24, 30, 81, 10, 18, 42, 12, 24, 100, 18, 121, 5, 35, 56, 28, 12, 144, 72, 48, 18, 169, 28, 196, 35, 21, 90, 225, 12, 32, 21, 63, 48, 256, 14, 40, 28, 80, 110, 289, 21, 324, 132, 32, 6, 54, 40
Offset: 1
-
Table[If[n==1,0,With[{y=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Total[y]*Max[y]]],{n,100}]
A340656
Numbers without a twice-balanced factorization.
Original entry on oeis.org
4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 42, 46, 48, 49, 51, 55, 57, 58, 60, 62, 64, 65, 66, 69, 70, 72, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 102, 105, 106, 108, 110, 111, 112, 114, 115, 118, 119
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1} 33: {2,5} 64: {1,1,1,1,1,1}
6: {1,2} 34: {1,7} 65: {3,6}
8: {1,1,1} 35: {3,4} 66: {1,2,5}
9: {2,2} 38: {1,8} 69: {2,9}
10: {1,3} 39: {2,6} 70: {1,3,4}
14: {1,4} 42: {1,2,4} 72: {1,1,1,2,2}
15: {2,3} 46: {1,9} 74: {1,12}
16: {1,1,1,1} 48: {1,1,1,1,2} 77: {4,5}
21: {2,4} 49: {4,4} 78: {1,2,6}
22: {1,5} 51: {2,7} 80: {1,1,1,1,3}
25: {3,3} 55: {3,5} 81: {2,2,2,2}
26: {1,6} 57: {2,8} 82: {1,13}
27: {2,2,2} 58: {1,10} 84: {1,1,2,4}
30: {1,2,3} 60: {1,1,2,3} 85: {3,7}
32: {1,1,1,1,1} 62: {1,11} 86: {1,14}
For example, the factorizations of 48 with (2) and (3) equal are: (2*2*2*6), (2*2*3*4), (2*4*6), (3*4*4), but since none of these has length 2, the sequence contains 48.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
-
A010054 counts balanced strict partitions.
-
A047993 counts balanced partitions.
-
A098124 counts balanced compositions.
-
A106529 lists Heinz numbers of balanced partitions.
-
A340596 counts co-balanced factorizations.
-
A340597 lists numbers with an alt-balanced factorization.
-
A340598 counts balanced set partitions.
-
A340599 counts alt-balanced factorizations.
-
A340600 counts unlabeled balanced multiset partitions.
-
A340652 counts unlabeled twice-balanced multiset partitions.
-
A340653 counts balanced factorizations.
-
A340654 counts cross-balanced factorizations.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]=={}&]
A340657
Numbers with a twice-balanced factorization.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 36, 37, 40, 41, 43, 44, 45, 47, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 88, 89, 92, 97, 98, 99, 100, 101, 103, 104, 107, 109, 113, 116, 117, 120, 124, 127, 131, 135, 136, 137
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 29: {10} 59: {17}
2: {1} 31: {11} 61: {18}
3: {2} 36: {1,1,2,2} 63: {2,2,4}
5: {3} 37: {12} 67: {19}
7: {4} 40: {1,1,1,3} 68: {1,1,7}
11: {5} 41: {13} 71: {20}
12: {1,1,2} 43: {14} 73: {21}
13: {6} 44: {1,1,5} 75: {2,3,3}
17: {7} 45: {2,2,3} 76: {1,1,8}
18: {1,2,2} 47: {15} 79: {22}
19: {8} 50: {1,3,3} 83: {23}
20: {1,1,3} 52: {1,1,6} 88: {1,1,1,5}
23: {9} 53: {16} 89: {24}
24: {1,1,1,2} 54: {1,2,2,2} 92: {1,1,9}
28: {1,1,4} 56: {1,1,1,4} 97: {25}
The twice-balanced factorizations of 1920 (with prime indices {1,1,1,1,1,1,1,2,3}) are (8*8*30) and (8*12*20), so 1920 is in the sequence.
The alt-balanced version is
A340597.
Positions of nonzero terms in
A340655.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
-
A010054 counts balanced strict partitions.
-
A047993 counts balanced partitions.
-
A098124 counts balanced compositions.
-
A106529 lists Heinz numbers of balanced partitions.
-
A340596 counts co-balanced factorizations.
-
A340598 counts balanced set partitions.
-
A340599 counts alt-balanced factorizations.
-
A340600 counts unlabeled balanced multiset partitions.
-
A340652 counts unlabeled twice-balanced multiset partitions.
-
A340653 counts balanced factorizations.
-
A340654 counts cross-balanced factorizations.
Cf.
A005117,
A056239,
A112798,
A117409,
A320325,
A325134,
A339846,
A339890,
A340607,
A340689,
A340690.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]!={}&]
Comments