A106580 Triangle T(n, k) = T(n, k-1) + Sum_{i >= 1} T(n-2i, k-i) with T(n,0)=1, read by rows.
1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 1, 2, 5, 7, 7, 1, 2, 5, 9, 12, 12, 1, 2, 5, 13, 22, 29, 29, 1, 2, 5, 13, 26, 41, 53, 53, 1, 2, 5, 13, 34, 65, 101, 130, 130, 1, 2, 5, 13, 34, 73, 129, 194, 247, 247, 1, 2, 5, 13, 34, 89, 185, 322, 481, 611, 611, 1, 2, 5, 13, 34, 89, 201, 386, 645, 945, 1192, 1192, 1, 2, 5, 13, 34, 89, 233, 514, 973, 1613, 2354, 2965, 2965
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 2; 1, 2, 3, 3; 1, 2, 5, 7, 7; 1, 2, 5, 9, 12, 12; 1, 2, 5, 13, 22, 29, 29; 1, 2, 5, 13, 26, 41, 53, 53; 1, 2, 5, 13, 34, 65, 101, 130, 130;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
A106580:= proc(n,k) option remember; if k=0 then 1; else A106580(n,k-1) + add(A106580(n-2*i, k-i), i=1..min(k, floor(n/2), n-k)); fi ; end: for n from 0 to 12 do for k from 0 to n do printf("%d, ", A106580(n,k)); od; od; # R. J. Mathar, May 02 2007
-
Mathematica
t[, 0]= 1; t[n, k_]:= t[n, k] = t[n, k-1] + Sum[t[n-2j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jan 08 2014, after Maple *)
-
Sage
@CachedFunction def T(n, k): if (k<0): return 0 elif (k==0): return 1 else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Sep 07 2021
Formula
T(n, k) = T(n, k-1) + Sum_{i>=1} T(n-2*i, k-i), with T(n, 0) = 1.
Extensions
More terms from R. J. Mathar, May 02 2007
Comments