A123214
Primes q such that (2^p + 1)/3 is prime, where p = Prime[q]; or primes in A123176[n].
Original entry on oeis.org
2, 3, 5, 7, 11, 31, 43, 1697, 12923, 13103, 77509
Offset: 1
A123176[n] begin {2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 22, 26, 31, 39, 43, ...}.
Thus
a(1) = 2, a(2) = 3, a(3) = 5, a(4) = 7, a(5) = 11, a(6) = 31, a(7) = 43.
A231755
Primes of the form (2^n-1)/3 - n.
Original entry on oeis.org
331, 1398079, 89478457, 393530540239137101071, 1730765619511609209510165443073253, 8173309551284740577911184144801648979299941984979211421, 2142584059011987034055949456454883470029603991710390447068299
Offset: 1
a(2)= 1398079: n=22: ((2^n-(-1)^n)/3-n)= 1398079, which is prime.
a(4)= 393530540239137101071: n=70: ((2^n-(-1)^n)/3-n)= 393530540239137101071, which is prime.
Cf.
A107036 (indices of prime Jacobsthal numbers).
Cf.
A128209 (Jacobsthal numbers+1).
-
KD := proc() local a; a:= (2^n -(-1)^n)/3-n; if isprime(a)then RETURN (a); fi; end: seq(KD(),n=1..1000);
-
for(n=8,500,if(ispseudoprime(t=2^n\/3-n),print1(t", "))) \\ Charles R Greathouse IV, Nov 13 2013
A291853
Numbers n such that (3^n - (-2)^n)/5 is prime.
Original entry on oeis.org
3, 4, 7, 11, 83, 149, 223, 599, 647, 1373, 8423
Offset: 1
4 is in this sequence because (3^4 - (-2)^4)/5 = 13 is prime.
Cf.
A107036 (numbers n such that (2^n-(-1)^n)/3 is prime).
-
[n: n in [1..1000] | IsPrimePower((3^n-(-2)^n) div 5)];
-
Select[Range[2000], PrimeQ[(3^# - (-2)^#)/5] &] (* Michael De Vlieger, Dec 09 2017 *)
Comments