cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 87 results. Next

A107142 Primes of the form x^2 + 36y^2.

Original entry on oeis.org

37, 61, 157, 193, 313, 349, 373, 397, 433, 577, 601, 613, 661, 673, 769, 853, 877, 937, 997, 1021, 1069, 1201, 1297, 1321, 1429, 1549, 1657, 1693, 1741, 1789, 1801, 1861, 1933, 1993, 2053, 2137, 2269, 2293, 2389, 2437, 2473, 2521, 2593, 2749
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -144. See A107132 for more information.
These appear to be the same as Glaisher's 1889 list of primes == 1 mod 12 that have "positive character". - N. J. A. Sloane, Jul 30 2015

References

  • J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 36, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\36), if(isprime(t=w+36*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107143 Primes of the form 2x^2 + 19y^2.

Original entry on oeis.org

2, 19, 37, 173, 179, 181, 269, 307, 509, 547, 563, 683, 971, 1093, 1123, 1171, 1229, 1381, 1523, 1571, 1579, 1627, 1637, 1667, 1877, 1931, 1933, 2083, 2339, 2371, 2389, 2621, 2731, 2749, 2789, 2909, 3061, 3067, 3109, 3181, 3221, 3229, 3371
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -152. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 19, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\19), if(isprime(t=w+19*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107146 Primes of the form 6x^2 + 7y^2.

Original entry on oeis.org

7, 13, 31, 61, 103, 157, 181, 199, 223, 229, 271, 349, 367, 397, 439, 607, 661, 727, 733, 829, 853, 997, 1021, 1039, 1063, 1069, 1231, 1237, 1279, 1399, 1447, 1543, 1567, 1669, 1693, 1741, 1783, 1861, 1879, 1951, 2029, 2239, 2287, 2341, 2383
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -168. See A107132 for more information.

Crossrefs

Cf. A139827.

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 168 in {7, 13, 31, 55, 61, 103, 157} ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[6, 0, 7, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([7]), s=[13, 31, 55, 61, 103, 157]); forprime(p=13, lim, if(setsearch(s, p%168), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {7, 13, 31, 55, 61, 103, 157} (mod 168). - T. D. Noe, May 02 2008

A107148 Primes of the form 2x^2 + 21y^2.

Original entry on oeis.org

2, 23, 29, 53, 71, 149, 191, 197, 239, 263, 317, 359, 389, 431, 557, 599, 653, 701, 743, 821, 863, 911, 1031, 1061, 1103, 1229, 1367, 1373, 1439, 1493, 1583, 1607, 1709, 1733, 1871, 1877, 1901, 1997, 2039, 2069, 2087, 2111, 2207, 2213, 2237
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -168. See A107132 for more information.

Crossrefs

Cf. A139827.

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 168 in {2, 23, 29, 53, 71, 95, 149} ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[2, 0, 21, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2]), s=[23, 29, 53, 71, 95, 149]); forprime(p=23, lim, if(setsearch(s, p%168), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {2, 23, 29, 53, 71, 95, 149} (mod 168). - T. D. Noe, May 02 2008

A107149 Primes of the form 4x^2 + 11y^2.

Original entry on oeis.org

11, 47, 103, 163, 199, 311, 419, 499, 587, 599, 683, 863, 883, 907, 911, 991, 1087, 1123, 1291, 1307, 1367, 1439, 1543, 1567, 1571, 1699, 1907, 2003, 2039, 2539, 2579, 2671, 2731, 2803, 2843, 2927, 3191, 3259, 3323, 3391, 3463, 3499, 3623
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -176. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[4, 0, 11, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\11), if(isprime(t=w+11*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107150 Primes of the form x^2 + 44y^2.

Original entry on oeis.org

53, 257, 269, 397, 401, 421, 617, 757, 773, 929, 1021, 1109, 1181, 1237, 1433, 1609, 1621, 1697, 1753, 1873, 2069, 2113, 2237, 2381, 2621, 2729, 2777, 2797, 2897, 2953, 3041, 3257, 3433, 3613, 3677, 3701, 3733, 3793, 3853, 3877, 4013, 4093
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -176. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 44, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=0, sqrtint((lim-w)\44), if(isprime(t=w+44*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107153 Primes of the form 2x^2 + 23y^2.

Original entry on oeis.org

2, 23, 31, 41, 73, 151, 223, 239, 257, 311, 449, 577, 593, 599, 601, 607, 647, 673, 719, 823, 863, 929, 967, 991, 1087, 1129, 1153, 1223, 1289, 1297, 1327, 1481, 1543, 1559, 1823, 1871, 1889, 1913, 2063, 2129, 2143, 2377, 2441, 2473, 2657, 2663
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -184. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 23, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\23), if(isprime(t=w+23*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107155 Primes of the form x^2 + 49y^2.

Original entry on oeis.org

53, 113, 149, 193, 197, 277, 317, 373, 421, 449, 457, 541, 557, 809, 821, 953, 1009, 1117, 1229, 1289, 1409, 1481, 1493, 1549, 1597, 1709, 1789, 1801, 1873, 1877, 1901, 1933, 2053, 2153, 2221, 2293, 2377, 2381, 2389, 2417, 2437, 2521, 2549
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -196. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 49, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\49), if(isprime(t=w+49*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107156 Primes of the form 2x^2 + 25y^2.

Original entry on oeis.org

2, 43, 97, 227, 233, 257, 313, 353, 467, 563, 617, 643, 673, 787, 907, 947, 1193, 1283, 1297, 1483, 1777, 1873, 1907, 2027, 2083, 2153, 2203, 2267, 2273, 2377, 2417, 2617, 2683, 2803, 2963, 3067, 3083, 3187, 3217, 3313, 3593, 3673, 3907
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -200. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 25, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\25), if(isprime(t=w+25*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107157 Primes of the form x^2 + 50y^2.

Original entry on oeis.org

59, 131, 281, 491, 499, 571, 619, 641, 739, 809, 811, 881, 929, 1259, 1289, 1291, 1571, 1721, 1801, 1889, 1979, 2089, 2131, 2161, 2339, 2459, 2531, 2659, 2801, 2851, 3169, 3209, 3259, 3299, 3449, 3539, 3851, 3929, 3931, 4019, 4049, 4051
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -200. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 50, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\50), if(isprime(t=w+50*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Previous Showing 21-30 of 87 results. Next