cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 87 results. Next

A107158 Primes of the form 3x^2 + 17y^2.

Original entry on oeis.org

3, 17, 29, 71, 311, 317, 347, 419, 431, 449, 617, 743, 857, 881, 941, 947, 1013, 1091, 1151, 1163, 1193, 1217, 1451, 1601, 1847, 1877, 2063, 2069, 2153, 2207, 2357, 2411, 2459, 2591, 2777, 2861, 2963, 3023, 3089, 3257, 3359, 3407, 3461, 3533
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -204. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[3, 0, 17, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\17), if(isprime(t=w+17*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107160 Primes of the form x^2 + 52y^2.

Original entry on oeis.org

53, 61, 101, 173, 233, 257, 277, 433, 569, 677, 757, 829, 857, 881, 937, 953, 997, 1013, 1049, 1093, 1193, 1277, 1297, 1301, 1361, 1381, 1429, 1433, 1693, 1733, 1741, 1873, 1889, 1901, 1993, 2029, 2141, 2161, 2389, 2417, 2549, 2557, 2609
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -208. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 52, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\52), if(isprime(t=w+52*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107162 Primes of the form x^2 + 54y^2.

Original entry on oeis.org

79, 103, 223, 241, 337, 487, 577, 607, 1033, 1153, 1279, 1327, 1399, 1423, 1447, 1471, 1489, 1879, 1993, 2089, 2113, 2311, 2473, 2617, 2647, 2671, 2713, 2719, 2767, 2887, 3079, 3169, 3271, 3313, 3457, 3511, 3559, 3607, 3673, 3697, 3793
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -216. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 54, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\54), if(isprime(t=w+54*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107163 Primes of the form 7x^2 + 8y^2.

Original entry on oeis.org

7, 71, 79, 191, 263, 463, 599, 631, 823, 863, 919, 991, 1031, 1327, 1367, 1471, 1583, 1607, 1831, 1999, 2087, 2111, 2143, 2311, 2543, 2647, 2671, 2767, 2879, 2927, 3119, 3623, 3767, 3823, 4327, 4447, 4463, 4663, 4783, 4799, 4951, 5023, 5119
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -224. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[7, 0, 8, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\7), w=7*x^2; for(y=0, sqrtint((lim-w)\8), if(isprime(t=w+8*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107164 Primes of the form x^2 + 56y^2.

Original entry on oeis.org

137, 233, 281, 449, 673, 953, 977, 1033, 1129, 1409, 1481, 1873, 2017, 2081, 2129, 2137, 2377, 2417, 2657, 2713, 2753, 2857, 2969, 3313, 3529, 3593, 3697, 3833, 4001, 4561, 4649, 4657, 4673, 4729, 4817, 4993, 5657, 5737, 5849, 6217, 6329
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -224. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 56, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\56), if(isprime(t=w+56*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

A107165 Primes of the form 3x^2 + 19y^2.

Original entry on oeis.org

3, 19, 31, 67, 79, 103, 127, 151, 211, 223, 307, 331, 379, 439, 487, 523, 547, 607, 751, 787, 811, 907, 991, 1039, 1063, 1123, 1171, 1231, 1291, 1399, 1447, 1459, 1471, 1579, 1627, 1663, 1699, 1723, 1747, 1951, 2083, 2131, 2143, 2179, 2203
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -228. See A107132 for more information.

Crossrefs

Cf. A139827.

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 228 in [3, 19, 31, 67, 79, 91, 103, 127, 151, 211, 223]]; // Vincenzo Librandi, Jul 25 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 19, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([3]), s=[19, 31, 67, 79, 91, 103, 127, 151, 211, 223]); forprime(p=19, lim, if(setsearch(s, p%228), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

The primes are congruent to {3, 19, 31, 67, 79, 91, 103, 127, 151, 211, 223} (mod 228). - T. D. Noe, May 02 2008

A107166 Primes of the form 2x^2 + 29y^2.

Original entry on oeis.org

2, 29, 31, 37, 47, 61, 79, 101, 127, 157, 191, 229, 263, 269, 271, 293, 311, 317, 359, 367, 389, 421, 461, 479, 503, 541, 599, 607, 653, 677, 727, 733, 743, 751, 757, 773, 797, 823, 829, 839, 853, 887, 911, 967, 983, 997, 1013, 1061, 1063, 1087, 1117
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -232. See A107132 for more information.

Crossrefs

Cf. A139827.

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 232 in {2, 15, 21, 29, 31, 37, 39, 47, 55, 61, 69, 77, 79, 85, 95, 101, 119, 127, 133, 135, 143, 157, 159, 189, 191, 205, 213, 215, 221, 229} ]; // Vincenzo Librandi, Jul 25 2012
    
  • Mathematica
    QuadPrimes2[2, 0, 29, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2]), s=[15, 21, 29, 31, 37, 39, 47, 55, 61, 69, 77, 79, 85, 95, 101, 119, 127, 133, 135, 143, 157, 159, 189, 191, 205, 213, 215, 221, 229]); forprime(p=29, lim, if(setsearch(s, p%232), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

The primes are congruent to {2, 15, 21, 29, 31, 37, 39, 47, 55, 61, 69, 77, 79, 85, 95, 101, 119, 127, 133, 135, 143, 157, 159, 189, 191, 205, 213, 215, 221, 229} (mod 232). - T. D. Noe, May 02 2008

A107170 Primes of the form 2x^2 + 31y^2.

Original entry on oeis.org

2, 31, 103, 193, 281, 311, 479, 521, 617, 857, 937, 1063, 1423, 1489, 1657, 1831, 1847, 2543, 2591, 2609, 2671, 2711, 2729, 2753, 2903, 2953, 3023, 3089, 3167, 3319, 3559, 3697, 3761, 3769, 3823, 3863, 4079, 4111, 4201, 4561, 4639, 4903
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -248. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 31, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\31), if(isprime(t=w+31*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017

A107171 Primes of the form 5x^2 + 13y^2.

Original entry on oeis.org

5, 13, 97, 137, 193, 197, 457, 593, 613, 617, 733, 877, 1097, 1237, 1373, 1553, 1753, 1877, 1913, 1997, 2273, 2293, 2333, 2377, 2477, 2593, 2917, 2953, 3037, 3373, 3517, 3593, 3673, 3677, 3697, 3733, 3853, 4217, 4337, 4457, 4513, 4517, 4673
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -260. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[5, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\5), w=5*x^2; for(y=0, sqrtint((lim-w)\13), if(isprime(t=w+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017

A107172 Primes of the form 6x^2 + 11y^2.

Original entry on oeis.org

11, 17, 107, 227, 281, 491, 563, 569, 593, 659, 761, 1187, 1289, 1361, 1427, 1451, 1481, 1553, 1811, 1889, 1913, 1931, 2153, 2243, 2273, 2411, 2441, 2459, 2657, 2939, 3203, 3209, 3329, 3449, 3467, 3593, 3761, 3779, 3803, 4259, 4289, 4457
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -264. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[6, 0, 11, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\6), w=6*x^2; for(y=1, sqrtint((lim-w)\11), if(isprime(t=w+11*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
Previous Showing 31-40 of 87 results. Next