cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A107694 Primes with digital product = 8.

Original entry on oeis.org

181, 241, 421, 811, 1181, 1811, 2141, 2221, 2411, 4211, 8111, 21221, 141121, 142111, 411211, 1111181, 1112141, 1121221, 1211141, 1211411, 1212121, 2111411, 2121121, 2211211, 2221111, 2411111, 4121111, 4211111, 11221211, 12111221, 12121121
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, May 20 2005

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^7) | &*Intseq(p) eq 8]; // Vincenzo Librandi, Jul 27 2016
  • Mathematica
    Union[ Flatten[ Table[ Select[ Sort[ FromDigits /@ Join[ Permutations[ Flatten[{8, Table[1, {n}]}]], Permutations[ Flatten[{2, 4, Table[1, {n - 1}]}]], Permutations[ Flatten[{2, 2, 2, Table[1, {n - 2}]}] ]]], PrimeQ[ # ] & ], {n, 0, 7}]]]
    Select[Prime[Range[3 10^6]], Times@@IntegerDigits[#] == 8 &] (* Vincenzo Librandi, Jul 27 2016 *)

A107697 Primes with digital product = 12.

Original entry on oeis.org

43, 223, 431, 1223, 1621, 2161, 2213, 3221, 6121, 6211, 11261, 11621, 12161, 12611, 13411, 21611, 26111, 41113, 41131, 61121, 61211, 111143, 111341, 111431, 112213, 114113, 114311, 121123, 121321, 122131, 123121, 131221, 141131, 141311, 143111
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, May 20 2005

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000000) | &*Intseq(p) eq 12]; // Vincenzo Librandi, Jul 27 2016
  • Mathematica
    Union[ Flatten[ Table[ Select[ Sort[ FromDigits /@ Join[ Permutations[ Flatten[{2, 6, Table[1, {n - 1}]}]], Permutations[ Flatten[{3, 4, Table[1, {n - 1}]}]], Permutations[ Flatten[{2, 2, 3, Table[1, {n - 2}]}] ]]], PrimeQ[ # ] & ], {n, 0, 5}]]]
    Select[Prime[Range[75000]], Times@@IntegerDigits[#] == 12 &] (* Vincenzo Librandi, Jul 27 2016 *)

A198487 Smallest nonprime positive numbers whose digital product = n, or 0 if impossible.

Original entry on oeis.org

10, 1, 12, 1113, 4, 15, 6, 117, 8, 9, 25, 0, 26, 0, 27, 35, 28, 0, 36, 0, 45, 371, 0, 0, 38, 55, 0, 39, 74, 0, 56, 0, 48, 0, 0, 57, 49, 0, 0, 0, 58, 0, 76, 0, 0, 95, 0, 0, 68, 77, 255, 0, 0, 0, 69, 0, 78, 0, 0, 0, 256, 0, 0, 791, 88, 0, 0, 0, 0, 0, 275, 0, 98, 0, 0, 355
Offset: 0

Views

Author

Jaroslav Krizek, Oct 25 2011

Keywords

Comments

Zeros appear for n which are a member of A068191.
If the requirement "positive" is dropped, a(0) becomes 0 instead.

Examples

			a(21)=371 because 371 is  the smallest nonprime positive number whose digital product is 21 (3*7*1 = 21).
		

Crossrefs

Cf. A107698 (smallest primes with digital product n)

A198378 Smallest prime with multiplicative digital root value 0 <= n <= 9.

Original entry on oeis.org

59, 11, 2, 3, 41, 5, 23, 7, 29, 19
Offset: 0

Views

Author

Jaroslav Krizek, Oct 23 2011

Keywords

Crossrefs

A341634 Smallest prime whose product of digits (A007954) is the n-th 7-smooth number = A002473(n), with a(0) = 101.

Original entry on oeis.org

101, 11, 2, 3, 41, 5, 23, 7, 181, 19, 251, 43, 127, 53, 281, 29, 541, 37, 83, 11551, 139, 47, 523, 1481, 157, 149, 12451, 67, 59, 283, 11177, 2551, 239, 1187, 1453, 79, 881, 257, 89, 1553, 2851, 199, 347, 563, 1483, 277, 14551, 1753, 269, 827, 853, 15551, 367
Offset: 0

Views

Author

Bernard Schott, Feb 16 2021

Keywords

Comments

For n>=1, equals A107698 without the zeros.
101 is the smallest prime with the digit 0, so A007954(101) = 0 but as 0 is not a 7-smooth number, it is chosen a(0) = 101.

Examples

			83 is prime, A007954(83) = 8*3 = 24 that is the 18th 7-smooth number, and as no prime < 83 has a product of digits = 24, a(18) = 83.
		

Crossrefs

Programs

  • Mathematica
    pod[n_] := Times @@ IntegerDigits[n]; seq[max_] := Module[{sm7 = Join[{0}, Select[Range[max], Max[FactorInteger[#][[;; , 1]]] <= 7 &]], m, s, n, c, i, ind}, m = Length[sm7]; s = Table[0, {m}]; n = 1; c = 0; While[c < m, n = NextPrime[n]; i = pod[n]; If[MemberQ[sm7, i], ind = Position[sm7, i][[1, 1]]]; If[s[[ind]] == 0, c++; s[[ind]] = n]]; s]; seq[150] (* Amiram Eldar, Feb 16 2021 *)

Formula

a(n) = A107698(A002473(n)) for n>=1. - Amiram Eldar, Feb 17 2021

Extensions

More terms from Amiram Eldar, Feb 16 2021
Previous Showing 11-15 of 15 results.