cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A333653 Expansion of Product_{i>=1, j>=1} (1 + i*x^(i*j)).

Original entry on oeis.org

1, 1, 3, 7, 13, 27, 54, 98, 174, 335, 572, 1004, 1733, 2933, 4916, 8307, 13470, 22042, 35851, 57256, 91462, 145231, 227667, 355522, 554058, 853986, 1313121, 2010318, 3057827, 4627213, 6989808, 10481205, 15679549, 23365207, 34658909, 51241077, 75541695, 110852295, 162238415
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 38; CoefficientList[Series[Product[1 + i*x^(i*j), {i, 1, m}, {j, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 23 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(prod(i=1, N, prod(j=1, N\i, 1+i*x^(i*j))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, prod(d=1, k, 1+(k%d==0)*d*x^k)))

Formula

G.f.: Product_{k>0} f(q^k) where f(q) = Product_{i>=1} (1 + i*q^i).
G.f.: Product_{k>0} Product_{d|k} (1 + d*x^k).

A356957 Number of set partitions of strict integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 7, 7, 8, 13, 20, 19, 27, 30, 42, 60, 63, 75, 99, 112, 141, 191, 205, 248, 296, 357, 408, 513, 617, 696, 831, 969, 1117, 1337, 1523, 1797, 2171, 2420, 2805, 3265, 3772, 4289, 5013, 5661, 6579, 7679, 8615, 9807, 11335, 12799, 14581
Offset: 0

Views

Author

Gus Wiseman, Sep 13 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 7 set partitions:
  {{1}}  {{2}}  {{3}}      {{4}}      {{5}}      {{6}}
                {{1,2}}    {{1},{3}}  {{2,3}}    {{1,2,3}}
                {{1},{2}}             {{1},{4}}  {{1},{5}}
                                      {{2},{3}}  {{2},{4}}
                                                 {{1},{2,3}}
                                                 {{1,2},{3}}
                                                 {{1},{2},{3}}
		

Crossrefs

Intervals are counted by A000012, A001227, ranked by A073485.
The initial version is A010054.
For set partitions of {1..n} we have A011782.
The non-strict version is A107742
Not restricting to intervals gives A294617.
A000041 counts integer partitions, strict A000009.
A000110 counts set partitions.
A001970 counts multiset partitions of integer partitions.
A356941 counts multiset partitions of integer partitions w/ gapless blocks.

Programs

  • Mathematica
    chQ[y_] := Length[y] <= 1 || Union[Differences[y]] == {1};
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Join@@sps/@Reverse/@Select[IntegerPartitions[n], UnsameQ@@#&],And@@chQ/@#&]],{n,0,15}]

A318844 Expansion of Product_{k>=1} (1 + x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 8, 10, 15, 17, 29, 31, 48, 60, 81, 99, 143, 167, 231, 287, 374, 460, 615, 740, 964, 1194, 1512, 1856, 2379, 2877, 3635, 4460, 5540, 6759, 8433, 10192, 12608, 15335, 18774, 22726, 27868, 33525, 40863, 49292, 59652, 71694, 86780, 103818, 125118, 149778, 179608
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2018

Keywords

Comments

Convolution of A081362 and A107742.
Weigh transform of A032741.

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul((1+x^k)^(tau(k)-1),k=1..100),x=0,53): seq(coeff(a,x,n),n=0..52); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 52; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - 1) x^k/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A032741(k).
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/(k*(1 - x^(2*k)))), where sigma_1(k) = sum of divisors of k (A000203).

A327746 Expansion of Product_{i>=1, j>=1} 1 / (1 + (-x)^(i*(2*j - 1))).

Original entry on oeis.org

1, 1, 0, 2, 2, 2, 3, 3, 6, 7, 8, 9, 14, 16, 17, 26, 30, 35, 43, 52, 62, 77, 87, 104, 133, 152, 173, 212, 251, 287, 344, 397, 465, 549, 627, 729, 864, 986, 1127, 1325, 1524, 1740, 2009, 2306, 2641, 3047, 3455, 3942, 4549, 5157, 5846, 6700, 7605, 8608
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[Product[1/(1 + (-x)^k)^DivisorSum[k, Mod[#, 2] &], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[(-1)^k Sum[(-1)^(k/d) d DivisorSum[d, Mod[#, 2] &], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 53}]

Formula

G.f.: Product_{k>=1} 1 / (1 + (-x)^k)^A001227(k).

A329467 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j)) * (1 + x^(2*i*j)).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 31, 47, 81, 126, 204, 308, 487, 720, 1098, 1613, 2395, 3461, 5061, 7213, 10362, 14633, 20712, 28926, 40497, 56000, 77527, 106349, 145791, 198339, 269678, 364106, 491125, 658708, 882077, 1175392, 1563884, 2071363, 2739095, 3608040, 4744058, 6216087
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2019

Keywords

Comments

Weigh transform of A069735.

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[((1 - x^(4 k))/(1 - x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d If[EvenQ[d], DivisorSigma[0, d] + DivisorSigma[0, d/2], DivisorSigma[0, d]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]

Formula

G.f.: Product_{i>=1, j>=1} (1 + x^(2*i*j)) / (1 - x^(i*(2*j - 1))).
G.f.: Product_{k>=1} ((1 - x^(4*k)) / (1 - x^k))^A000005(k).
G.f.: Product_{k>=1} (1 + x^k)^A069735(k).

A329805 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j) + x^(2*i*j)).

Original entry on oeis.org

1, 1, 3, 4, 10, 14, 27, 39, 71, 101, 170, 242, 390, 551, 852, 1198, 1803, 2512, 3687, 5101, 7351, 10088, 14289, 19472, 27208, 36810, 50790, 68262, 93200, 124453, 168279, 223364, 299473, 395214, 525754, 690103, 911644, 1190447, 1562449, 2030381, 2649162, 3426591
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[((1 - x^(3 k))/(1 - x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 - x^(3*k)) / (1 - x^k))^A000005(k).
Previous Showing 51-56 of 56 results.