A294978
Coefficients in expansion of (E_4/E_2^4)^(1/8).
Original entry on oeis.org
1, 42, -2268, 395304, -64600914, 11644170552, -2188350306072, 424652412357696, -84326944950450972, 17044476557469661986, -3493525880987663047128, 724189608821718233434296, -151528575864988356484968840, 31955212589107172812017247992
Offset: 0
-
terms = 14;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]/E2[x]^4)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A300147
a(n) = (1/8) * Sum_{d|n} d * A110163(d).
Original entry on oeis.org
-30, 6660, -1536120, 354476040, -81800478900, 18876653594640, -4356063194112240, 1005225129672310800, -231970363216834560390, 53530545369975222475800, -12352954264801690636800360, 2850624405442199478575792160
Offset: 1
A299955
Coefficients in expansion of E_4^(3/2).
Original entry on oeis.org
1, 360, 24840, -465120, 57417480, -6800282640, 930889890720, -139401582644160, 22250341370421000, -3723955494287559480, 646515765251485521840, -115559140273640812421280, 21150946022800731753255840, -3948247836773858791840263120
Offset: 0
E_4^(k/8):
A108091 (k=1),
A289307 (k=2),
A289308 (k=3),
A289292 (k=4),
A289309 (k=5),
A289318 (k=6),
A289319 (k=7),
A004009 (k=8), this sequence (k=12),
A008410 (k=16),
A008411 (k=24),
A282012 (k=32),
A282015 (k=40).
A341801
Coefficients of the series whose 12th power equals E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973.
Original entry on oeis.org
1, -24, -13932, -3585216, -1580941068, -628142318640, -281617154080704, -126114490533924480, -58596395743623957084, -27537281150571923942424, -13153668428658997172513880, -6345860505664230715931502912, -3091029995619009106117946403456
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)*E(4,x)*E(6,x))^(1/12), x, 20):
seriestolist(%);
A377220
Expansion of (1/x) * series_reversion(x*E_4(x)), where E_4(x) denotes the Eisenstein series of weight 4 (see A004009).
Original entry on oeis.org
1, -240, 113040, -66534720, 43859560080, -30976854078240, 22919806575299520, -17536455012714130560, 13761543459443537811600, -11015192093055645841813680, 8958361831335008460574345440, -7381454927286057227098811282880, 6148958599311807793865548969813440, -5169975617288319668409172392988655520
Offset: 0
The 8th root of the g.f. A(x)^(1/8) = (1 - 240*x + 113040*x^2 - 66534720*x^3 + 43859560080*x^4 - 30976854078240*x^5 + 22919806575299520*x^6 +...)^(1/8) = 1 - 30*x + 10980*x^2 - 5822040*x^3 + 3623245710*x^4 - 2467207358280*x^5 + 1779938570782440*x^6 + .... lies in Z[[x]]. See A377221.
-
with(numtheory):
Order := 30:
E_4 := 1 + 240*add(sigma[3](n)*x^n, n = 1..30):
solve(series(x*E_4, x) = y, x):
seq(coeftayl(series((%/y), y), y = 0, n), n = 0..20);
A377221
Coefficients of the series whose 8th power is 1/x * series_reversion(x * E_4(x)), where E_4(x) is the Eisenstein series of weight 4.
Original entry on oeis.org
1, -30, 10980, -5822040, 3623245710, -2467207358280, 1779938570782440, -1336872265001920320, 1034337566576031632100, -818707881037376263396710, 659829780447854309255690280, -539628866179308154664183513160, 446708428717281359928910138018680, -373580804664955058627213489276760840
Offset: 0
Let F(x) = 1/(E_4(x))^(1/8) = 1 - 30*x + 3780*x^2 - 616440*x^3 + 111056910*x^4 - 21135698280*x^5 + ...
Then
I(F(x)) = 1 - 30*x + 4680*x^2 - 983640*x^3 + 234828510*x^4 - 60324330780*x^5 + ...
I^2(F(x)) = 1 - 30*x + 5580*x^2 - 1431840*x^3 + 422752110*x^4 - 135277163280*x^5 + ...
I^3(F(x)) = 1 - 30*x + 6480*x^2 - 1961040*x^3 + 687787710*x^4 - 262396695780*x^5 + ...
I^4(F(x)) = 1 - 30*x + 7380*x^2 - 2571240*x^3 + 1042895310*x^4 - 461122928280*x^5 + ...
I^5(F(x)) = 1 - 30*x + 8280*x^2 - 3262440*x^3 + 1501034910*x^4 - 753933360780*x^5 + ...
I^6(F(x)) = 1 - 30*x + 9180*x^2 - 4034640*x^3 + 2075166510*x^4 - 1166342993280*x^5 + ...
I^7(F(x)) = 1 - 30*x + 10080*x^2 - 4887840*x^3 + 2778250110*x^4 - 1726904325780*x^5 + ...
I^8(F(x)) = 1 - 30*x + 10980*x^2 - 5822040*x^3 + 3623245710*x^4 - 2467207358280*x^5 + ... = the g.f. A(x).
- Peter Bala, Fractional iteration of a series inversion operator
- N. Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
-
with(numtheory):
Order := 30:
E_4 := 1 + 240*add(sigma[3](n)*x^n, n = 1..30):
solve(series(x*E_4, x) = y, x):
seq(coeftayl(series((%/y)^(1/8), y), y = 0, n), n = 0..20);
A108772
( (Theta series of E_8)^(1/8) - (theta series of Leech lattice)^(1/24) ) / 30.
Original entry on oeis.org
0, 1, -369, -9408, 22853743, 4794451200, -3085237931328, -819499646151424, 384739275624398865, 158606464687370095617, -50143660099205286196800, -29592112124024539896414528, 6061193531453485412550560256, 5483327637634568394533944708352
Offset: 0
A341842
Coefficients of the series whose 12th power equals E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009.
Original entry on oeis.org
1, 18, -2088, 301296, -50784174, 9174627360, -1734603719472, 338286925650240, -67486440186470016, 13697820033167444178, -2818359890320927630320, 586296297186462310481424, -123077156275866375661524864, 26034142700316716015964656544
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)*E(4,x))^(1/12), x, 20):
seriestolist(%);
Comments