A338860 The excess of the number of partitions of n with more odd parts than even parts over the number of partitions of n with more even parts than odd parts.
0, 1, 0, 2, 1, 3, 4, 6, 8, 11, 17, 21, 30, 38, 53, 68, 90, 115, 150, 192, 243, 312, 390, 496, 613, 775, 951, 1193, 1456, 1810, 2200, 2715, 3285, 4026, 4856, 5909, 7106, 8595, 10301, 12394, 14809, 17728, 21118, 25171, 29891, 35489, 42018, 49702, 58678, 69180
Offset: 0
Keywords
Examples
The 3 partitions of 4 with more odd parts than even parts are [3,1], [2,1,1], and [1,1,1,1], while the 2 partitions of 4 with more even parts than odd parts are [4] and [2,2]. Hence a(4) = 3-2 = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, signum(t), `if`(i<1, 0, b(n, i-1, t)+ b(n-i, min(n-i, i), t+(2*irem(i, 2)-1)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..55); # Alois P. Heinz, Jan 14 2021
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[i < 1, 0, b[n, i-1, t] + b[n-i, Min[n-i, i], t + (2*Mod[i, 2]-1)]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 09 2022, after Alois P. Heinz *)
-
PARI
for(n=0,43,my(me=0,mo=0);forpart(v=n,my(x=Vec(v),se=sum(k=1,#x,x[k]%2==0),so=sum(k=1,#x,x[k]%2>0));me+=(se>so);mo+=(so>se));print1(mo-me,", ")) \\ Hugo Pfoertner, Jan 13 2021
Comments