cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 158 results. Next

A330690 Number of ways to factor A108951(n) into "Fermi-Dirac primes" (A050376), where A108951 is fully multiplicative with a(prime(k)) = k-th primorial.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 4, 4, 1, 4, 1, 2, 4, 2, 1, 4, 8, 2, 4, 2, 1, 4, 1, 4, 4, 2, 8, 8, 1, 2, 4, 4, 1, 4, 1, 2, 4, 2, 1, 4, 16, 8, 4, 2, 1, 8, 8, 4, 4, 2, 1, 8, 1, 2, 4, 6, 8, 4, 1, 2, 4, 8, 1, 8, 1, 2, 8, 2, 16, 4, 1, 4, 16, 2, 1, 8, 8, 2, 4, 4, 1, 8, 16, 2, 4, 2, 8, 6, 1, 16, 4, 16, 1, 4, 1, 4, 8
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Comments

a(64) = 6 is the first term which is not a power of 2.

Crossrefs

Programs

Formula

a(n) = A050377(A108951(n)).
a(n) = A050378(A329901(n)).

A331284 Number of values of k, 1 <= k <= n, with A329605(k) = A329605(n), where A329605 is the number of divisors of primorial inflation of n (A108951).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2020

Keywords

Comments

Ordinal transform of A329605, or equally, of A329606.

Crossrefs

Cf. A000005, A108951, A329605, A329606, A331285 (positions of the first occurrences of each n, also positions of records).
Cf. also A067004.

Programs

  • Mathematica
    c[n_] := c[n] = If[n == 1, 1, Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ c /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]];
    A329605[n_] := DivisorSigma[0, c[n]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A329605[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A329605(n) = if(1==n,1,my(f=factor(n),e=1,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m));
    v331284 = ordinal_transform(vector(up_to, n, A329605(n)));
    A331284(n) = v331284[n];

Formula

a(A331285(n)) = n for all n.

A347379 Möbius transform of A108951, the primorial inflation of n.

Original entry on oeis.org

1, 1, 5, 2, 29, 5, 209, 4, 30, 29, 2309, 10, 30029, 209, 145, 8, 510509, 30, 9699689, 58, 1045, 2309, 223092869, 20, 870, 30029, 180, 418, 6469693229, 145, 200560490129, 16, 11545, 510509, 6061, 60, 7420738134809, 9699689, 150145, 116, 304250263527209, 1045, 13082761331670029, 4618, 870, 223092869, 614889782588491409
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Comments

Multiplicative because A108951 is.

Crossrefs

Programs

  • Mathematica
    prim[p_] := Product[Prime[i], {i, 1, PrimePi[p]}]; f[p_, e_] := (pr = prim[p])^e - pr^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) };
    A347379(n) = sumdiv(n,d,moebius(n/d)*A108951(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A108951(d).
a(A000040(n)) = A002110(n) - 1.
From Amiram Eldar, Sep 16 2023: (Start)
Multiplicative with a(p^e) = A034386(p)^e - A034386(p)^(e-1).
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + A002110(n)/(A002110(n)-1)^2) = 3.8730356211898760903... . (End)

A354352 Sum of primorial inflation (A108951) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 24, 0, 8, 36, 120, 0, 24, 0, 840, 360, 16, 0, 72, 0, 120, 2520, 9240, 0, 48, 900, 120120, 216, 840, 0, 0, 0, 32, 27720, 2042040, 12600, 144, 0, 38798760, 360360, 240, 0, 0, 0, 9240, 1080, 892371480, 0, 96, 44100, 1800, 6126120, 120120, 0, 432, 138600, 1680, 116396280, 25878772920, 0, 720, 0, 802241960520
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2022

Keywords

Crossrefs

Programs

Formula

a(n) = A108951(n) + A354351(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A108951(d) * A354351(n/d).
For all n >= 1, a(A001248(n)) = A061742(n).

A373984 a(n) = A108951(n) - A373158(n), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 0, 0, 0, 0, 4, 0, 2, 24, 28, 0, 14, 0, 208, 144, 8, 0, 58, 0, 86, 1044, 2308, 0, 36, 840, 30028, 198, 626, 0, 322, 0, 22, 11544, 510508, 6060, 128, 0, 9699688, 150144, 204, 0, 2302, 0, 6926, 1038, 223092868, 0, 82, 43680, 1738, 2552544, 90086, 0, 412, 66960, 1464, 48498444, 6469693228, 0, 680, 0, 200560490128
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Crossrefs

Programs

  • PARI
    A373984(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); (m-s); };

A373989 a(n) = A276150(gcd(A108951(n), A373158(n))), where A276150 is the digit sum in primorial base, A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 6, 4, 2, 2, 1, 4, 1, 2, 1, 2, 6, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 6, 1, 1, 1, 4, 2, 1, 4, 2, 2, 2, 2, 1, 2, 6, 1, 2, 2, 2, 4, 1, 1, 5, 4, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 26 2024

Keywords

Crossrefs

Programs

  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
    A373985(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); gcd(m,s); };
    A373989(n) = A276150(A373985(n));

Formula

a(n) = A276150(A373985(n)).

A329889 a(n) is the unique integer k such that A108951(k) = A260633(n).

Original entry on oeis.org

1, 3, 6, 12, 5, 10, 20, 15, 30, 60, 28, 45, 21, 56, 90, 42, 180, 84, 63, 168, 70, 126, 140, 252, 189, 280, 504, 210, 378, 264, 1008, 420, 315, 220, 840, 630, 1680, 792, 330, 1260, 1584, 945, 1400, 660, 2520, 495, 1890, 882, 1320, 2100, 990, 1764, 2640, 4200, 1980, 3528, 1485, 2200, 8400, 2646, 3960, 6300, 2970, 5292, 7920, 3300, 5940, 2772
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A260633(n)).

A330685 Primorial deflation of highly factorable numbers: a(n) is the unique integer x such that A108951(x) = A033833(n).

Original entry on oeis.org

1, 4, 8, 6, 16, 12, 9, 24, 18, 48, 20, 36, 96, 27, 40, 72, 30, 54, 80, 144, 60, 160, 45, 288, 120, 90, 240, 180, 84, 480, 200, 360, 168, 960, 270, 400, 126, 720, 336, 540, 800, 252, 1440, 672, 280, 1080, 504, 1344, 378, 560, 1008, 420, 2688, 2400, 756, 1120, 2016, 840, 1512, 630, 4032, 1680, 3024, 1260, 2268, 3360, 6048, 2520, 4536, 6720
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A033833(n)).

A331283 a(n) = gcd(n, A329605(n)), where A329605(n) gives the number of divisors of primorial inflation of n, A108951(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 6, 1, 4, 9, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 3, 20, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 3, 4, 1, 2, 1, 8, 3, 2, 1, 30, 1, 2, 1, 1, 1, 6, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 3, 8, 1, 10, 1, 4, 3, 2, 1, 2, 1, 2, 1, 5, 1, 6, 1, 8, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2020

Keywords

Crossrefs

Programs

  • PARI
    A331283(n) = if(1==n,1,my(f=factor(n),e=1,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); gcd(n,m));

Formula

a(n) = gcd(n, A329605(n)).
a(A002110(n)) = gcd(A002110(n), A000142(1+n)) = A034386(1+n), for n >= 0.

A337471 Primorial inflation of n prime shifted once: a(n) = A003961(A108951(n)).

Original entry on oeis.org

1, 3, 15, 9, 105, 45, 1155, 27, 225, 315, 15015, 135, 255255, 3465, 1575, 81, 4849845, 675, 111546435, 945, 17325, 45045, 3234846615, 405, 11025, 765765, 3375, 10395, 100280245065, 4725, 3710369067405, 243, 225225, 14549535, 121275, 2025, 152125131763605, 334639305, 3828825, 2835, 6541380665835015, 51975, 307444891294245705, 135135
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A003961(A108951(n)).
a(n) = A000265(A108951(A003961(n))).
Completely multiplicative with a(prime(i)) = A003961(A002110(i)) = A070826(1+i). - Antti Karttunen, Nov 17 2020
Sum_{n>=1} 1/a(n) = 1 / Product_{k>=2} (1 - 1/A070826(k)) = 1.6241170949... . - Amiram Eldar, Dec 08 2022
Previous Showing 51-60 of 158 results. Next