cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181815 a(n) = largest integer such that, when any of its divisors divides A025487(n), the quotient is a member of A025487.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 12, 5, 32, 9, 24, 10, 64, 18, 48, 20, 128, 36, 15, 96, 7, 27, 40, 256, 72, 30, 192, 14, 54, 80, 512, 144, 60, 384, 28, 108, 25, 160, 1024, 45, 288, 21, 81, 120, 768, 56, 216, 50, 320, 2048, 90, 576, 11, 42, 162, 240, 1536, 112, 432, 100, 640, 4096, 180, 1152
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

A permutation of the natural numbers.
The number of divisors of a(n) equals the number of ordered factorizations of A025487(n) as A025487(j)*A025487(k). Cf. A182762.
From Antti Karttunen, Dec 28 2019: (Start)
Rearranges terms of A108951 into ascending order, as A108951(a(n)) = A025487(n).
The scatter plot looks like a curtain of fractal spray, which is typical for many of the so-called "entanglement permutations". Indeed, according to the terminology I use in my 2016-2017 paper, this sequence is obtained by entangling the complementary pair (A329898, A330683) with the complementary pair (A005843, A003961), which gives the following implicit recurrence: a(A329898(n)) = 2*a(n) and a(A330683(n)) = A003961(a(n)). An explicit form is given in the formula section.
(End)

Examples

			For any divisor d of 9 (d = 1, 3, 9), 36/d (36, 12, 4) is a member of A025487. 9 is the largest number with this relationship to 36; therefore, since 36 = A025487(11), a(11) = 9.
		

Crossrefs

If this sequence is considered the "primorial deflation" of A025487(n) (see first formula), the primorial inflation of n is A108951(n), and the primorial inflation of A025487(n) is A181817(n).
A181820(n) is another mapping from the members of A025487 to the positive integers.

Programs

  • Mathematica
    (* First, load the program at A025487, then: *)
    Map[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, Union@ Flatten@ f@ 6] (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    A181815(n) = A329900(A025487(n)); \\ Antti Karttunen, Dec 24 2019

Formula

If A025487(n) is considered in its form as Product A002110(i)^e(i), then a(n) = Product p(i)^e(i). If A025487(n) is instead considered as Product p(i)^e(i), then a(n) = Product (p(i)/A008578(i))^e(i).
a(n) = A122111(A181820(n)). - Matthew Vandermast, May 21 2012
From Antti Karttunen, Dec 24-29 2019: (Start)
a(n) = Product_{i=1..A051282(n)} A000040(A304886(i)).
a(n) = A329900(A025487(n)) = A319626(A025487(n)).
a(n) = A163511(A329905(n)).
For n > 1, if A330682(n) = 1, then a(n) = A003961(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
A252464(a(n)) = A329907(n).
A330690(a(n)) = A050378(n).
a(A306802(n)) = A329902(n).
(End)

A050377 Number of ways to factor n into "Fermi-Dirac primes" (members of A050376).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).

Crossrefs

Cf. A108951, A330687 (positions of records), A330688 (record values), A330689, A330690, A382295.

Programs

  • Maple
    A018819:= proc(n) option remember;
      if n::odd then procname(n-1)
      else procname(n-1) + procname(n/2)
      fi
    end proc:
    A018819(0):= 1:
    f:= n -> mul(A018819(s[2]),s=ifactors(n)[2]):
    seq(f(n),n=1..100); # Robert Israel, Jan 14 2016
  • Mathematica
    b[0] = 1; b[n_] := b[n] = b[n - 1] + If[EvenQ[n], b[n/2], 0];
    a[n_] := Times @@ (b /@ FactorInteger[n][[All, 2]]);
    Array[a, 102] (* Jean-François Alcover, Jan 27 2018 *)
  • PARI
    A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819
    A050377(n) = factorback(apply(e -> A018819(e), factor(n)[, 2])); \\ Antti Karttunen, Dec 28 2019

Formula

Dirichlet g.f.: Product_{n in A050376} (1/(1-1/n^s)).
a(p^k) = A000123([k/2]) for all primes p.
a(A002110(n)) = 1.
Multiplicative with a(p^e) = A018819(e). - Christian G. Bower and David W. Wilson, May 22 2005
a(n) = Sum{a(d): d^2 divides n}, a(1) = 1. - Reinhard Zumkeller, Jul 12 2007
a(A108951(n)) = A330690(n). - Antti Karttunen, Dec 28 2019
a(n) = 1 for all squarefree values of n (A005117). - Eric Fox, Feb 03 2020
G.f.: Sum_{k>=1} a(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Nov 25 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.7876368001694456669... (A382295), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)). - Amiram Eldar, Oct 03 2023

Extensions

More terms from Antti Karttunen, Dec 28 2019
Showing 1-2 of 2 results.