A330687 Positions of records in A050377, number of ways to factor n into "Fermi-Dirac primes" (A050376).
1, 4, 16, 64, 144, 256, 576, 1024, 1296, 2304, 5184, 9216, 20736, 82944, 186624, 331776, 746496, 1327104, 2073600, 2985984, 5308416, 8294400, 18662400, 21233664, 26873856, 33177600, 47775744, 51840000, 74649600, 107495424, 132710400, 207360000, 429981696, 530841600, 671846400, 829440000, 1194393600, 1719926784, 1866240000, 2687385600
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..1004 (terms <= 10^100; first 294 terms from Antti Karttunen)
Crossrefs
Programs
-
Mathematica
Block[{s = Rest@ Nest[Function[{a, n, b}, Append[a, {Times @@ Map[a[[# + 1, -1]] &, FactorInteger[n][[All, -1]] ], b}]] @@ {#1, #2, #1[[-1, -1]] + If[EvenQ@ #2, #1[[#2/2 + 1, -1]], 0 ]} & @@ {#, Length@ #} &, {{0, 1}, {1, 1}}, 10^5][[All, 1]], t}, t = Union@ FoldList[Max, s]; Map[FirstPosition[s, #][[1]] &, t]] (* Michael De Vlieger, Dec 29 2019 *)
-
PARI
upto_e = 101; \\ 101 --> 211 terms. A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819 v018819 = vector(upto_e,n,A018819(n)); \\ Precompute. A050377(n) = factorback(apply(e -> v018819[e], factor(n)[, 2])); A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980 A330687list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, m=0, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,#v025487,if((t=A050377(v025487[i]))>m, listput(lista,v025487[i]); m=t)); Vec(lista); }; v330687 = A330687list(upto_e); A330687(n) = v330687[n]; for(n=1,#v330687,print1(A330687(n),", "));
Comments