A050377 Number of ways to factor n into "Fermi-Dirac primes" (members of A050376).
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000 (the first 10000 terms from Reinhard Zumkeller)
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Maple
A018819:= proc(n) option remember; if n::odd then procname(n-1) else procname(n-1) + procname(n/2) fi end proc: A018819(0):= 1: f:= n -> mul(A018819(s[2]),s=ifactors(n)[2]): seq(f(n),n=1..100); # Robert Israel, Jan 14 2016
-
Mathematica
b[0] = 1; b[n_] := b[n] = b[n - 1] + If[EvenQ[n], b[n/2], 0]; a[n_] := Times @@ (b /@ FactorInteger[n][[All, 2]]); Array[a, 102] (* Jean-François Alcover, Jan 27 2018 *)
-
PARI
A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819 A050377(n) = factorback(apply(e -> A018819(e), factor(n)[, 2])); \\ Antti Karttunen, Dec 28 2019
Formula
Dirichlet g.f.: Product_{n in A050376} (1/(1-1/n^s)).
a(p^k) = A000123([k/2]) for all primes p.
a(A002110(n)) = 1.
a(n) = Sum{a(d): d^2 divides n}, a(1) = 1. - Reinhard Zumkeller, Jul 12 2007
G.f.: Sum_{k>=1} a(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Nov 25 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.7876368001694456669... (A382295), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)). - Amiram Eldar, Oct 03 2023
Extensions
More terms from Antti Karttunen, Dec 28 2019
Comments