cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A249487 Numbers k such that the infinitary summatory Liouville function L*(k) = Sum{i=1..k} A064179(i) is zero and L*(k-1)*L*(k+1)=-1.

Original entry on oeis.org

2, 34, 42, 44, 198, 202, 646, 694, 840, 842, 856, 866, 876, 878, 880, 898, 902, 916, 1038, 1042, 1044, 1046, 1048, 1052, 1068, 1076, 1090, 1140, 1582, 1588, 1598, 1684, 1692, 1726, 1748, 1750, 2292, 2304, 2336, 2478, 2556, 2558, 2754, 2762, 2766, 2772, 2774
Offset: 1

Views

Author

Vladimir Shevelev, Jan 13 2015

Keywords

Comments

Analog of A249482 in Fermi-Dirac arithmetic, based on distinct terms of A050376 as "primes". Surprisingly there is a giant contrast between this sequence and A249482.
For k >= 1,
in interval [a(2k-1), a(2k)], L(n) <= 0,
in interval [a(2k), a(2k+1)], L(n) >= 0.
In particular, for k=1, in interval [2, 34], L(n) <= 0.

Crossrefs

Extensions

More terms from Peter J. C. Moses, Jan 13 2015

A368405 Infinitary version of Mertens's function: a(n) = Sum_{k=1..n} A064179(k).

Original entry on oeis.org

1, 0, -1, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -2, -3, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -2, -1, 0, 1, 2, 1, 2, 3, 2, 1, 0, -1, 0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Crossrefs

Partial sums of A064179.
Similar sequences: A002321, A174863 (unitary), A209802 (exponential).

Programs

  • Mathematica
    f[p_, e_] := (-1)^DigitCount[e, 2, 1]; imu[1] = 1; imu[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[imu, 100]]
  • PARI
    imu(n) = vecprod(apply(x -> (-1)^hammingweight(x), factor(n)[, 2]));
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s+ = imu(k); print1(s, ", "));}

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A000379 Numbers where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.

Original entry on oeis.org

1, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000028 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
See A000028 for precise definition, Maple program, etc.
The sequence contains products of even number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that the infinitary Möbius function (A064179) of m equals 1. (This follows from the definition of A064179.)
A number m is in the sequence iff the number k = k(m) of terms of A050376 that divide m with odd maximal exponent is even (see example).
(End)
Numbers k for which A064547(k) [or equally, A268386(k)] is even. Numbers k for which A010060(A268387(k)) = 0. - Antti Karttunen, Feb 09 2016
The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897(.,.), it therefore forms a subgroup of the positive integers considered as a group under A059897(.,.). Specifically (expanding on the comment above dated May 04 2010) it is the subgroup of even length words in A050376, which is the group's lexicographically earliest ordered minimal set of generators. A000028, the set of odd length words in A050376, is its complementary coset. - Peter Munn, Nov 01 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is a square.
Numbers whose exponentially odious part (A367514) has an even number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 0. (End)

Examples

			If m = 120, then the maximal exponent of 2 that divides 120 is 3, for 3 it is 1, for 4 it is 1, for 5 it is 1. Thus k(120) = 4 and 120 is a term. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences: A030229, A238748, A262675, A268390.
Subsequence of A268388 (apart from the initial 1).
Complement: A000028.
Sequences used in definitions of this sequence: A133008, A050376, A059897, A064179, A064547, A124010 (prime exponents), A268386, A268387, A010060.
Other 2-way classifications: A000069/A001969 (to which A000120 and A010060 are relevant), A000201/A001950.
This is different from A123240 (e.g., does not contain 180). The first difference occurs already at n=31, where A123240(31) = 60, a value which does not occur here, as a(31+1) = 62. The same is true with respect to A131181, as A131181(31) = 60.

Programs

  • Haskell
    a000379 n = a000379_list !! (n-1)
    a000379_list = filter (even . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Mathematica
    Select[ Range[130], EvenQ[ Count[ Flatten[ IntegerDigits[#, 2]& /@ Transpose[ FactorInteger[#]][[2]]], 1]]&] // Prepend[#, 1]& (* Jean-François Alcover, Apr 11 2013, after Harvey P. Dale *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2==0 \\ Charles R Greathouse IV, Aug 31 2013
    (Scheme, two variants)
    (define A000379 (MATCHING-POS 1 1 (COMPOSE even? A064547)))
    (define A000379 (MATCHING-POS 1 1 (lambda (n) (even? (A000120 (A268387 n))))))
    ;; Both require also my IntSeq-library. - Antti Karttunen, Feb 09 2016

Extensions

Edited by N. J. A. Sloane, Dec 20 2007, to restore the original definition.

A091732 Iphi(n): infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 3, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 6, 24, 12, 16, 18, 28, 8, 30, 15, 20, 16, 24, 24, 36, 18, 24, 12, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 16, 40, 18, 36, 28, 58, 24, 60, 30, 48, 45, 48, 20, 66, 48, 44, 24, 70, 24, 72, 36, 48
Offset: 1

Views

Author

Steven Finch, Mar 05 2004

Keywords

Comments

Not the same as A064380.
With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = (A050376(i)-1) * (A050376(j)-1) * ... * (A050376(k)-1). (Cf. the first formula). - Antti Karttunen, Jan 15 2019

Examples

			a(6)=2 since 6=P_1*P_2, where P_1=2^(2^0) and P_2=3^(2^0); hence (P_1-1)*(P_2-1)=2.
12=3*4 (3,4 are in A050376). Therefore, a(12) = 12*(1-1/3)*(1-1/4) = 6. - _Vladimir Shevelev_, Feb 20 2011
		

Crossrefs

Programs

  • Maple
    A091732 := proc(n) local f,a,e,p,b; a :=1 ; for f in ifactors(n)[2] do e := op(2,f) ; p := op(1,f) ; b := convert(e,base,2) ; for i from 1 to nops(b) do if op(i,b) > 0 then a := a*(p^(2^(i-1))-1) ; end if; end do: end do: a ; end proc:
    seq(A091732(n),n=1..20) ; # R. J. Mathar, Apr 11 2011
  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); Array[a, 100] (* Amiram Eldar, Feb 28 2020 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); }; \\ Antti Karttunen, Jan 15 2019

Formula

Consider the set, I, of integers of the form p^(2^j), where p is any prime and j >= 0. Let n > 1. From the fundamental theorem of arithmetic and the fact that the binary representation of any integer is unique, it follows that n can be uniquely factored as a product of distinct elements of I. If n = P_1*P_2*...*P_t, where each P_j is in I, then iphi(n) = Product_{j=1..t} (P_j - 1).
From Vladimir Shevelev, Feb 20 2011: (Start)
Thus we have the following analog of the formula phi(n) = n*Product_{p prime divisors of n} (1-1/p): if the factorization of n over distinct terms of A050376 is n = Product(q) (this factorization is unique), then a(n) = n*Product(1-1/q). Thus a(n) is infinitary multiplicative, i.e., if n_1 and n_2 have no common i-divisors, then a(n_1*n_2) = a(n_1)*a(n_2). Now we see that this property is stronger than the usual multiplicativity, therefore a(n) is a multiplicative arithmetic function.
Add that Sum_{d runs i-divisors of n} a(d)=n and a(n) = n*Sum_{d runs i-divisors of n} A064179(d)/d. The latter formulas are analogs of the corresponding formulas for phi(n): Sum_{d|n} phi(d) = n and phi(n) = n*Sum_{d|n} mu(d)/d. (End).
a(n) = n - A323413(n). - Antti Karttunen, Jan 15 2019
a(n) <= A064380(n), with equality if and only if n is in A050376. - Amiram Eldar, Feb 18 2023

A000028 Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 121, 126, 127, 128, 130, 131, 132, 135, 136, 137
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000379 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
Contains (for example) 180, so is different from A123193. - Max Alekseyev, Sep 20 2007
The sequence contains products of odd number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that infinitary Moebius function of m (A064179) equals -1. This follows from the definition of A064179.
Number m is in the sequence if and only if the number k = k(m) of terms of A050376 which divide m with odd maximal exponent is odd.
For example, if m = 96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96) = 3 and 96 is a term.
(End)
Positions of odd terms in A064547, A268386 and A293439. - Antti Karttunen, Nov 09 2017
Lexicographically earliest sequence of distinct nonnegative integers such that no term is the A059897 product of 2 terms. (A059897 can be considered as a multiplicative operator related to the Fermi-Dirac factorization of numbers described in A050376.) Specifying that the A059897 product be of 2 distinct terms leaves the sequence unchanged. The equivalent sequences using standard integer multiplication are A026416 (with the 2 terms specified as distinct) and A026424 (otherwise). - Peter Munn, Mar 16 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is not a square.
Numbers whose exponentially odious part (A367514) has an odd number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 1. (End)

Examples

			If k = 96 then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1. 5 in binary is 101_2 and has so has a sum of binary digits of 1 + 0 + 1 = 2. 1 in binary is 1_2 and so has a sum of binary digits of 1. Thus the sum of digits of binary exponents is 2 + 1 = 3 which is odd and so 96 is a term. - _Vladimir Shevelev_, Oct 28 2013, edited by _David A. Corneth_, Mar 20 2019
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A133008, A000379 (complement), A000120 (binary weight function), A064547; also A066724, A026477, A050376, A084400, A268386, A293439.
Note that A000069 and A001969, also A000201 and A001950 give other decompositions of the integers into two classes.
Cf. A124010 (prime exponents).

Programs

  • Haskell
    a000028 n = a000028_list !! (n-1)
    a000028_list = filter (odd . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    (Maple program from N. J. A. Sloane, Dec 20 2007) expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # returns a list of the exponents e_1, e_2, ...
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: # returns weight of binary expansion
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # returns sum of weights of exponents
    M:=400; t0:=[]; t1:=[]; for n from 1 to M do if LamMos(n) mod 2 = 0 then t0:=[op(t0),n] else t1:=[op(t1),n]; fi; od: t0; t1; # t0 is A000379, t1 is the present sequence
  • Mathematica
    iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@ (DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; q=Select[ Range[ 20000 ],iMoebiusMu[ # ]===-1& ] (* Wouter Meeussen, Dec 21 2007 *)
    Rest[Select[Range[150],OddQ[Count[Flatten[IntegerDigits[#,2]&/@ Transpose[ FactorInteger[#]][[2]]],1]]&]] (* Harvey P. Dale, Feb 25 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2 \\ Charles R Greathouse IV, Aug 31 2013

Extensions

Entry revised by N. J. A. Sloane, Dec 20 2007, restoring the original definition, correcting the entries and adding a new b-file.

A332823 A 3-way classification indicator generated by the products of two consecutive primes and the cubes of primes. a(n) is -1, 0, or 1 such that a(n) == A048675(n) (mod 3).

Original entry on oeis.org

0, 1, -1, -1, 1, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 0, 0, 1, -1, 1, 1, -1, 0, -1, 0, 0, -1, 0, 1, 1, 1, -1, -1, 0, -1, -1, 1, 0, 1, 0, 0, 1, -1, 1, -1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 0, 1, 1, 0, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, -1, -1, -1, 1, 0, -1, 0, 1, 1, -1, 0
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

Completely additive modulo 3.
The equivalent sequence modulo 2 is A096268 (with offset 1), which produces the {A003159, A036554} classification.
Let H be the multiplicative subgroup of the positive rational numbers generated by the products of two consecutive primes and the cubes of primes. a(n) indicates the coset of H containing n. a(n) = 0 if n is in H. a(n) = 1 if n is in 2H. a(n) = -1 if n is in (1/2)H.
The properties of this classification can usefully be compared to two well-studied classifications. With the {A026424, A028260} classes, multiplying a member of one class by a prime gives a member of the other class. With the {A000028, A000379} classes, adding a factor to the Fermi-Dirac factorization of a member of one class gives a member of the other class. So, if 4 is not a Fermi-Dirac factor of k, k and 4k will be in different classes of the {A000028, A000379} set; but k and 4k will be in the same class of the {A026424, A028260} set. For two numbers to necessarily be in different classes when they differ in either of the 2 ways described above, 3 classes are needed.
With the classes defined by this sequence, no two of k, 2k and 4k are in the same class. This is a consequence of the following stronger property: if k is any positive integer and m is a member of A050376 (often called Fermi-Dirac primes), then no two of k, k * m, k * m^2 are in the same class. Also, if p and q are consecutive primes, then k * p and k * q are in different classes.
Further properties are given in the sequences that list the classes: A332820, A332821, A332822.
The scaled imaginary part of the Eisenstein integer-valued function, f, defined in A353445. - Peter Munn, Apr 27 2022

Crossrefs

Cf. A332813 (0,1,2 version of this sequence), A353350.
Cf. A353354 (inverse Möbius transform, gives another 3-way classification indicator function).
Cf. A332820, A332821, A332822 for positions of 0's, 1's and -1's in this sequence; also A003159, A036554 for the modulo 2 equivalents.
Comparable functions: A008836, A064179, A096268, A332814.
A000035, A003961, A028234, A055396, A067029, A097248, A225546, A297845, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A000040, A332461, A332462.

Programs

  • PARI
    A332823(n) = { my(f = factor(n),u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u,-1,u); };

Formula

a(n) = A102283(A048675(n)) = -1 + (1 + A048675(n)) mod 3.
a(1) = 0; for n > 1, a(n) = A102283[(A067029(n) * (2-(A000035(A055396(n))))) + a(A028234(n))].
For all n >= 1, k >= 1: (Start)
a(n * k) == a(n) + a(k) (mod 3).
a(A331590(n,k)) == a(n) + a(k) (mod 3).
a(n^2) = -a(n).
a(A003961(n)) = -a(n).
a(A297845(n,k)) = a(n) * a(k).
(End)
For all n >= 1: (Start)
a(A000040(n)) = (-1)^(n-1).
a(A225546(n)) = a(n).
a(A097248(n)) = a(n).
a(A332461(n)) = a(A332462(n)) = A332814(n).
(End)
a(n) = A332814(A332462(n)). [Compare to the formula above. For a proof, see A353350.] - Antti Karttunen, Apr 16 2022

A066427 Numbers with mu = 0 and infinitary MoebiusMu = -1; (sum of binary digits of prime exponents is odd).

Original entry on oeis.org

4, 9, 16, 24, 25, 40, 49, 54, 56, 60, 72, 81, 84, 88, 90, 96, 104, 108, 121, 126, 128, 132, 135, 136, 140, 150, 152, 156, 160, 169, 180, 184, 189, 192, 198, 200, 204, 220, 224, 228, 232, 234, 240, 248, 250, 252, 256, 260, 276, 288, 289, 294, 296, 297, 300, 306
Offset: 1

Views

Author

Wouter Meeussen, Dec 27 2001

Keywords

Comments

First differs from A378489 (the intersection of A000028 and A028260) by the inclusion of 72. - Peter Munn, Jul 13 2024

Examples

			54 is in this sequence because its prime decomposition is 2^1 * 3^3, it is not squarefree and the binary digits of "1" and "3" add up to 3, an odd number.
		

Crossrefs

Programs

  • Mathematica
    iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@(DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; Select[ Range[ 400 ], MoebiusMu[ # ]===0 && iMoebiusMu[ # ]===-1 & ]
  • PARI
    is(n)=my(f=factor(n)[,2]); #f && vecmax(f)>1 && vecsum(apply(hammingweight, f))%2 \\ Charles R Greathouse IV, Oct 15 2015

A331301 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = min(n, A225546(n)) for all other n, except for odd primes p, f(p) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 5, 6, 7, 3, 8, 3, 9, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 7, 22, 23, 24, 19, 3, 25, 26, 27, 3, 28, 3, 29, 30, 31, 3, 13, 32, 33, 34, 35, 3, 36, 37, 38, 39, 40, 3, 41, 3, 42, 43, 10, 44, 45, 3, 46, 47, 48, 3, 36, 3, 49, 50, 51, 52, 53, 3, 54, 17, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 66, 27, 3, 67, 68, 69, 3, 70, 3, 71, 72
Offset: 1

Views

Author

Antti Karttunen, Jan 21 2020

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A064179(i) = A064179(j),
a(i) = a(j) => A064547(i) = A064547(j),
a(i) = a(j) => A302777(i) = A302777(j),
a(i) = a(j) => A331308(i) = A331308(j),
a(i) = a(j) => A331287(i) = A331287(j),
a(i) = a(j) => A331592(i) = A331592(j).

Crossrefs

Programs

  • PARI
    up_to = 10000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux331301(n) = if((n%2)&&isprime(n),0,A331288(n)); \\ Needs also code from A331288.
    v331301 = rgs_transform(vector(up_to, n, Aux331301(n)));
    A331301(n) = v331301[n];

A066428 Numbers with mu = 0 and infinitary MoebiusMu = +1 (sum of binary digits of prime exponents is even).

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 32, 36, 44, 45, 48, 50, 52, 63, 64, 68, 75, 76, 80, 92, 98, 99, 100, 112, 116, 117, 120, 124, 125, 144, 147, 148, 153, 162, 164, 168, 171, 172, 175, 176, 188, 196, 207, 208, 212, 216, 225, 236, 242, 243, 244, 245, 261, 264, 268, 270, 272
Offset: 1

Views

Author

Wouter Meeussen, Dec 27 2001

Keywords

Examples

			28 is in this sequence because its prime decomposition is 2^2* 7^1, it is not squarefree and the binary digits of "2" and "1" add up to 2, an even number.
		

Crossrefs

Programs

  • Mathematica
    iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@(DigitCount[ Last[ Transpose[ FactorInteger[ n ] ]], 2, 1 ]) ], -1, 1 ]]; Select[ Range[ 400 ], MoebiusMu[ # ]===0 && iMoebiusMu[ # ]===+1 & ]
  • PARI
    is(n)=my(f=factor(n)[,2]); #f && vecmax(f)>1 && vecsum(apply(hammingweight, f))%2==0 \\ Charles R Greathouse IV, Oct 15 2015
Showing 1-10 of 10 results.