cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A000379 Numbers where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.

Original entry on oeis.org

1, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000028 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
See A000028 for precise definition, Maple program, etc.
The sequence contains products of even number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that the infinitary Möbius function (A064179) of m equals 1. (This follows from the definition of A064179.)
A number m is in the sequence iff the number k = k(m) of terms of A050376 that divide m with odd maximal exponent is even (see example).
(End)
Numbers k for which A064547(k) [or equally, A268386(k)] is even. Numbers k for which A010060(A268387(k)) = 0. - Antti Karttunen, Feb 09 2016
The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897(.,.), it therefore forms a subgroup of the positive integers considered as a group under A059897(.,.). Specifically (expanding on the comment above dated May 04 2010) it is the subgroup of even length words in A050376, which is the group's lexicographically earliest ordered minimal set of generators. A000028, the set of odd length words in A050376, is its complementary coset. - Peter Munn, Nov 01 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is a square.
Numbers whose exponentially odious part (A367514) has an even number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 0. (End)

Examples

			If m = 120, then the maximal exponent of 2 that divides 120 is 3, for 3 it is 1, for 4 it is 1, for 5 it is 1. Thus k(120) = 4 and 120 is a term. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences: A030229, A238748, A262675, A268390.
Subsequence of A268388 (apart from the initial 1).
Complement: A000028.
Sequences used in definitions of this sequence: A133008, A050376, A059897, A064179, A064547, A124010 (prime exponents), A268386, A268387, A010060.
Other 2-way classifications: A000069/A001969 (to which A000120 and A010060 are relevant), A000201/A001950.
This is different from A123240 (e.g., does not contain 180). The first difference occurs already at n=31, where A123240(31) = 60, a value which does not occur here, as a(31+1) = 62. The same is true with respect to A131181, as A131181(31) = 60.

Programs

  • Haskell
    a000379 n = a000379_list !! (n-1)
    a000379_list = filter (even . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Mathematica
    Select[ Range[130], EvenQ[ Count[ Flatten[ IntegerDigits[#, 2]& /@ Transpose[ FactorInteger[#]][[2]]], 1]]&] // Prepend[#, 1]& (* Jean-François Alcover, Apr 11 2013, after Harvey P. Dale *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2==0 \\ Charles R Greathouse IV, Aug 31 2013
    (Scheme, two variants)
    (define A000379 (MATCHING-POS 1 1 (COMPOSE even? A064547)))
    (define A000379 (MATCHING-POS 1 1 (lambda (n) (even? (A000120 (A268387 n))))))
    ;; Both require also my IntSeq-library. - Antti Karttunen, Feb 09 2016

Extensions

Edited by N. J. A. Sloane, Dec 20 2007, to restore the original definition.

A133008 The defining property of the sequences {A, B} = {A000028, A000379} is that they are the unique pair of sets complementary with respect to the positive integers such that p(n) = |{x : x, y in A, x < y, xy = n}| = |{x : x, y in B, x < y, xy = n}| for all n >= 1. The present sequence gives the values of p(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1
Offset: 1

Views

Author

David W. Wilson, Dec 21 2007

Keywords

Crossrefs

Programs

  • Haskell
    a133008 n = length [x | x <- takeWhile (< n) a000028_list,
                        n `mod` x == 0, let y = n `div` x, x < y,
                        y `elem` takeWhile (<= n) a000028_list]
    -- Reinhard Zumkeller, Oct 05 2011

A378489 Intersection of A000028 and A028260.

Original entry on oeis.org

4, 9, 16, 24, 25, 40, 49, 54, 56, 60, 81, 84, 88, 90, 96, 104, 121, 126, 132, 135, 136, 140, 150, 152, 156, 160, 169, 184, 189, 198, 204, 220, 224, 228, 232, 234, 240, 248, 250, 256, 260, 276, 289, 294, 296, 297, 306, 308, 315, 328, 336, 340, 342, 344, 348, 350
Offset: 1

Views

Author

Paolo Xausa, Nov 28 2024, following a suggestion from Peter Munn

Keywords

Comments

First differs from A066427 at n = 11, where A066427(11) = 72 is missing from this sequence.

Crossrefs

Programs

  • Mathematica
    A000028Q[k_] := k > 1 && OddQ[Count[IntegerDigits[FactorInteger[k][[All, 2]], 2], 1, 2]];
    A028260Q[k_] := EvenQ[PrimeOmega[k]];
    Select[Range[500], A000028Q[#] && A028260Q[#] &]

A064175 Duplicate of A000028.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 121, 126, 127, 128, 130, 131, 132
Offset: 1

Views

Author

Keywords

A000069 Odious numbers: numbers with an odd number of 1's in their binary expansion.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
Offset: 1

Views

Author

Keywords

Comments

This sequence and A001969 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres impies.
Has asymptotic density 1/2, since exactly 2 of the 4 numbers 4k, 4k+1, 4k+2, 4k+3 have an even sum of bits, while the other 2 have an odd sum. - Jeffrey Shallit, Jun 04 2002
Nim-values for game of mock turtles played with n coins.
A115384(n) = number of odious numbers <= n; A000120(a(n)) = A132680(n). - Reinhard Zumkeller, Aug 26 2007
Indices of 1's in the Thue-Morse sequence A010060. - Tanya Khovanova, Dec 29 2008
For any positive integer m, the partition of the set of the first 2^m positive integers into evil ones E and odious ones O is a fair division for any polynomial sequence p(k) of degree less than m, that is, Sum_{k in E} p(k) = Sum_{k in O} p(k) holds for any polynomial p with deg(p) < m. - Pietro Majer, Mar 15 2009
For n>1 let b(n) = a(n-1). Then b(b(n)) = 2b(n). - Benoit Cloitre, Oct 07 2010
Lexicographically earliest sequence of distinct nonnegative integers with no term being the binary exclusive OR of any terms. The equivalent sequence for addition or for subtraction is A005408 (the odd numbers) and for multiplication is A026424. - Peter Munn, Jan 14 2018
Numbers of the form m XOR (2*m+1) for some m >= 0. - Rémy Sigrist, Apr 14 2022

Examples

			For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - _Vladimir Shevelev_, Jan 16 2012
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
  • N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Complement of A001969 (the evil numbers). Cf. A133009.
a(n) = 2*n + 1 - A010060(n) = A001969(n) + (-1)^A010060(n).
First differences give A007413.
Note that A000079, A083420, A002042, A002089, A132679 are subsequences.
See A027697 for primes, also A230095.
Cf. A005408 (odd numbers), A006068, A026424.

Programs

  • Haskell
    a000069 n = a000069_list !! (n-1)
    a000069_list = [x | x <- [0..], odd $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
    
  • Maple
    s := proc(n) local i,j,k,b,sum,ans; ans := [ ]; j := 0; for i while jA000069 := n->t1[n]; # s(k) gives first k terms.
    is_A000069 := n -> type(add(i,i=convert(n,base,2)),odd):
    seq(`if`(is_A000069(i),i,NULL),i=0..40); # Peter Luschny, Feb 03 2011
  • Mathematica
    Select[Range[300], OddQ[DigitCount[ #, 2][[1]]] &] (* Stefan Steinerberger, Mar 31 2006 *)
    a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
  • PARI
    {a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    {a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    a(n)=2*n-1-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    [n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
    
  • Python
    def A000069(n): return ((m:=n-1)<<1)+(m.bit_count()&1^1) # Chai Wah Wu, Mar 03 2023

Formula

G.f.: 1 + Sum_{k>=0} (t*(2+2t+5t^2-t^4)/(1-t^2)^2) * Product_{j=0..k-1} (1-x^(2^j)), t=x^2^k. - Ralf Stephan, Mar 25 2004
a(n+1) = (1/2) * (4*n + 1 + (-1)^A000120(n)). - Ralf Stephan, Sep 14 2003
Numbers n such that A010060(n) = 1. - Benoit Cloitre, Nov 15 2003
a(2*n+1) + a(2*n) = A017101(n) = 8*n+3. a(2*n+1) - a(2*n) gives the Thue-Morse sequence (1, 3 version): 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, ... A001969(n) + A000069(n) = A016813(n) = 4*n+1. - Philippe Deléham, Feb 04 2004
(-1)^a(n) = 2*A010060(n)-1. - Benoit Cloitre, Mar 08 2004
a(1) = 1; for n > 1: a(2*n) = 6*n-3 -a(n), a(2*n+1) = a(n+1) + 2*n. - Corrected by Vladimir Shevelev, Sep 25 2011
For k >= 1 and for every real (or complex) x, we have Sum_{i=1..2^k} (a(i)+x)^s = Sum_{i=1..2^k} (A001969(i)+x)^s, s=0..k.
For x=0, s <= k-1, this is known as Prouhet theorem (see J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence). - Vladimir Shevelev, Jan 16 2012
a(n+1) mod 2 = 1 - A010060(n) = A010059(n). - Robert G. Wilson v, Jan 18 2012
A005590(a(n)) > 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n)) = -1. - Reinhard Zumkeller, Apr 29 2012
a(n+1) = A006068(n) XOR (2*A006068(n) + 1). - Rémy Sigrist, Apr 14 2022

A001969 Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.

Original entry on oeis.org

0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000069 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres païens.
Theorem: First differences give A036585. (Observed by Franklin T. Adams-Watters.)
Proof from Max Alekseyev, Aug 30 2006 (edited by N. J. A. Sloane, Jan 05 2021): (Start)
Observe that if the last bit of a(n) is deleted, we get the nonnegative numbers 0, 1, 2, 3, ... in order.
The last bit in a(n+1) is 1 iff the number of bits in n is odd, that is, iff A010060(n+1) is 1.
So, taking into account the different offsets here and in A010060, we have a(n) = 2*(n-1) + A010060(n-1).
Therefore the first differences of the present sequence equal 2 + first differences of A010060, which equals A036585. QED (End)
Integers k such that A010060(k-1)=0. - Benoit Cloitre, Nov 15 2003
Indices of zeros in the Thue-Morse sequence A010060 shifted by 1. - Tanya Khovanova, Feb 13 2009
Conjecture, checked up to 10^6: a(n) is also the sequence of numbers k representable as k = ror(x) XOR rol(x) (for some integer x) where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. - Alex Ratushnyak, May 14 2016
From Charlie Neder, Oct 07 2018: (Start)
Conjecture is true: ror(x) and rol(x) have an even number of 1 bits in total (= 2 * A000120(x)), and XOR preserves the parity of this total, so the resulting number must have an even number of 1 bits. An x can be constructed corresponding to a(n) like so:
If the number of bits in a(n) is even, add a leading 0 so a(n) is 2k+1 bits long.
Do an inverse shuffle on a(n), then "divide" by 11, rotate the result k bits to the right, and shuffle to get x. (End)
Numbers of the form m XOR (2*m) for some m >= 0. - Rémy Sigrist, Feb 07 2021
The terms "evil numbers" and "odious numbers" were coined by Richard K. Guy, c. 1976 (Haque and Shallit, 2016) and appeared in the book by Berlekamp et al. (Vol. 1, 1st ed., 1982). - Amiram Eldar, Jun 08 2021

References

  • Elwyn R. Berlekamp, John H. Conway, Richard K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, 2nd ed., A K Peters, 2001, chapter 14, p. 110.
  • Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • Donald J. Newman, A Problem Seminar, Springer; see Problem #89.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (Russian).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A000069 (the odious numbers). Cf. A133009.
a(n)=2*n+A010060(n)=A000069(n)-(-1)^A010060(n). Cf. A018900.
The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Cf. A036585 (differences), A010060, A006364.
For primes see A027699, also A130593.

Programs

  • Haskell
    a001969 n = a001969_list !! (n-1)
    a001969_list = [x | x <- [0..], even $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n : n in [0..129] | IsEven(&+Intseq(n,2)) ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    s := proc(n) local i,j,ans; ans := [ ]; j := 0; for i from 0 while jA001969 := n->t1[n]; # s(k) gives first k terms.
    # Alternative:
    seq(`if`(add(k, k=convert(n,base,2))::even, n, NULL), n=0..129); # Peter Luschny, Jan 15 2021
    # alternative for use outside this sequence
    isA001969 := proc(n)
        add(d,d=convert(n,base,2)) ;
        type(%,'even') ;
    end proc:
    A001969 := proc(n)
        option remember ;
        local a;
        if n = 0 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001969(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A001969(n),n=1..200) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    Select[Range[0,300], EvenQ[DigitCount[ #, 2][[1]]] &]
    a[ n_] := If[ n < 1, 0, With[{m = n - 1}, 2 m + Mod[-Total@IntegerDigits[m, 2], 2]]]; (* Michael Somos, Jun 09 2019 *)
  • PARI
    a(n)=n-=1; 2*n+subst(Pol(binary(n)),x,1)%2
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n,-a((n-1)/2)+3*n))
    
  • PARI
    a(n)=2*(n-1)+hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    def ok(n): return bin(n)[2:].count('1') % 2 == 0
    print(list(filter(ok, range(130)))) # Michael S. Branicky, Jun 02 2021
    
  • Python
    from itertools import chain, count, islice
    def A001969_gen(): # generator of terms
        return chain((0,),chain.from_iterable((sorted(n^ n<<1 for n in range(2**l,2**(l+1))) for l in count(0))))
    A001969_list = list(islice(A001969_gen(),30)) # Chai Wah Wu, Jun 29 2022
    
  • Python
    def A001969(n): return ((m:=n-1).bit_count()&1)+(m<<1) # Chai Wah Wu, Mar 03 2023

Formula

a(n+1) - A001285(n) = 2n-1 has been verified for n <= 400. - John W. Layman, May 16 2003 [This can be directly verified by comparing Ralf Stephan's formulas for this sequence (see below) and for A001285. - Jianing Song, Nov 04 2024]
Note that 2n+1 is in the sequence iff 2n is not and so this sequence has asymptotic density 1/2. - Franklin T. Adams-Watters, Aug 23 2006
a(n) = (1/2) * (4n - 3 - (-1)^A000120(n-1)). - Ralf Stephan, Sep 14 2003
G.f.: Sum_{k>=0} (t(3+2t+3t^2)/(1-t^2)^2) * Product_{l=0..k-1} (1-x^(2^l)), where t = x^2^k. - Ralf Stephan, Mar 25 2004
a(2*n+1) + a(2*n) = A017101(n-1) = 8*n-5.
a(2*n) - a(2*n-1) gives the Thue-Morse sequence (3, 1 version): 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, .... A001969(n) + A000069(n) = A016813(n-1) = 4*n-3. - Philippe Deléham, Feb 04 2004
a(1) = 0; for n > 1: a(n) = 3*n-3 - a(n/2) if n even, a(n) = a((n+1)/2)+n-1 if n odd.
Let b(n) = 1 if sum of digits of n is even, -1 if it is odd; then Shallit (1985) showed that Product_{n>=0} ((2n+1)/(2n+2))^b(n) = 1/sqrt(2).
a(n) = 2n - 2 + A010060(n-1). - Franklin T. Adams-Watters, Aug 28 2006
A005590(a(n-1)) <= 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n-1)) = 1. - Reinhard Zumkeller, Apr 29 2012
a(n) = (a(n-1) + 2) XOR A010060(a(n-1) + 2). - Falk Hüffner, Jan 21 2022
a(n+1) = A006068(n) XOR (2*A006068(n)). - Rémy Sigrist, Apr 14 2022

Extensions

More terms from Robin Trew (trew(AT)hcs.harvard.edu)

A050376 "Fermi-Dirac primes": numbers of the form p^(2^k) where p is prime and k >= 0.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Every number n is a product of a unique subset of these numbers. This is sometimes called the Fermi-Dirac factorization of n (see A182979). Proof: In the prime factorization n = Product_{j>=1} p(j)^e(j) expand every exponent e(j) as binary number and pick the terms of this sequence corresponding to the positions of the ones in binary (it is clear that both n and n^2 have the same number of factors in this sequence, and that each factor appears with exponent 1 or 0).
Or, a(1) = 2; for n>1, a(n) = smallest number which cannot be obtained as the product of previous terms. This is evident from the unique factorization theorem and the fact that every number can be expressed as the sum of powers of 2. - Amarnath Murthy, Jan 09 2002
Except for the first term, same as A084400. - David Wasserman, Dec 22 2004
The least number having 2^n divisors (=A037992(n)) is the product of the first n terms of this sequence according to Ramanujan.
According to the Bose-Einstein distribution of particles, an unlimited number of particles may occupy the same state. On the other hand, according to the Fermi-Dirac distribution, no two particles can occupy the same state (by the Pauli exclusion principle). Unique factorizations of the positive integers by primes (A000040) and over terms of A050376 one can compare with two these distributions in physics of particles. In the correspondence with this, the factorizations over primes one can call "Bose-Einstein factorizations", while the factorizations over distinct terms of A050376 one can call "Fermi-Dirac factorizations". - Vladimir Shevelev, Apr 16 2010
The numbers of the form p^(2^k), where p is prime and k >= 0, might thus be called the "Fermi-Dirac primes", while the classic primes might be called the "Bose-Einstein primes". - Daniel Forgues, Feb 11 2011
In the theory of infinitary divisors, the most natural name of the terms is "infinitary primes" or "i-primes". Indeed, n is in the sequence, if and only if it has only two infinitary divisors. Since 1 and n are always infinitary divisors of n>1, an i-prime has no other infinitary divisors. - Vladimir Shevelev, Feb 28 2011
{a(n)} is the minimal set including all primes and closed with respect to squaring. In connection with this, note that n and n^2 have the same number of factors in their Fermi-Dirac representations. - Vladimir Shevelev, Mar 16 2012
In connection with this sequence, call an integer compact if the factors in its Fermi-Dirac factorization are pairwise coprime. The density of such integers equals (6/Pi^2)*Product_{prime p} (1+(Sum_{i>=1} p^(-(2^i-1))/(p+1))) = 0.872497... It is interesting that there exist only 7 compact factorials listed in A169661. - Vladimir Shevelev, Mar 17 2012
The first k terms of the sequence solve the following optimization problem:
Let x_1, x_2,..., x_k be integers with the restrictions: 2<=x_1A064547(Product{i=1..k} x_i) >= k. Let the goal function be Product_{i=1..k} x_i. Then the minimal value of the goal function is Product_{i=1..k} a(i). - Vladimir Shevelev, Apr 01 2012
From Joerg Arndt, Mar 11 2013: (Start)
Similarly to the first comment, for the sequence "Numbers of the form p^(3^k) or p^(2*3^k) where p is prime and k >= 0" one obtains a factorization into distinct factors by using the ternary expansion of the exponents (here n and n^3 have the same number of such factors).
The generalization to base r would use "Numbers of the form p^(r^k), p^(2*r^k), p^(3*r^k), ..., p^((r-1)*r^k) where p is prime and k >= 0" (here n and n^r have the same number of (distinct) factors). (End)
The first appearance of this sequence as a multiplicative basis in number theory with some new notions, formulas and theorems may have been in my 1981 paper (see the Abramovich reference). - Vladimir Shevelev, Apr 27 2014
Numbers n for which A064547(n) = 1. - Antti Karttunen, Feb 10 2016
Lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 or more distinct terms. Removing the distinctness requirement, the sequence becomes A000040 (the prime numbers); and the equivalent sequence where the product is of 2 distinct terms is A026416 (without its initial term, 1). - Peter Munn, Mar 05 2019
The sequence was independently developed as a multiplicative number system in 1985-1986 (and first published in 1995, see the Uhlmann reference) using a proof method involving representations of positive integers as sums of powers of 2. This approach offers an arguably simpler and more flexible means for analyzing the sequence. - Jeffrey K. Uhlmann, Nov 09 2022

Examples

			Prime powers which are not terms of this sequence:
  8 = 2^3 = 2^(1+2), 27 = 3^3 = 3^(1+2), 32 = 2^5 = 2^(1+4),
  64 = 2^6 = 2^(2+4), 125 = 5^3 = 5^(1+2), 128 = 2^7 = 2^(1+2+4)
"Fermi-Dirac factorizations":
  6 = 2*3, 8 = 2*4, 24 = 2*3*4, 27 = 3*9, 32 = 2*16, 64 = 4*16,
  108 = 3*4*9, 120 = 2*3*4*5, 121 = 121, 125 = 5*25, 128 = 2*4*16.
		

References

  • V. S. Abramovich, On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17 (Russian; MR0632989(83a:10003)).
  • S. Ramanujan, Highly Composite Numbers, Collected Papers of Srinivasa Ramanujan, p. 125, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
  • J. K. Uhlmann, Dynamic map building and localization: new theoretical foundations, Doctoral Dissertation, University of Oxford, Appendix 16, 1995.

Crossrefs

Cf. A000040 (primes, is a subsequence), A026416, A026477, A037992 (partial products), A050377-A050380, A052330, A064547, A066724, A084400, A176699, A182979.
Cf. A268388 (complement without 1).
Cf. A124010, subsequence of A000028, A000961, A213925, A223490.
Cf. A228520, A186945 (Fermi-Dirac analog of Ramanujan primes, A104272, and Labos primes, A080359).
Cf. also A268385, A268391, A268392.

Programs

  • Haskell
    a050376 n = a050376_list !! (n-1)
    a050376_list = filter ((== 1) . a209229 . a100995) [1..]
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    isA050376 := proc(n)
        local f,e;
        f := ifactors(n)[2] ;
        if nops(f) = 1 then
            e := op(2,op(1,f)) ;
            if isA000079(e) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    A050376 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2 ;
        else
            for a from procname(n-1)+1 do
                if isA050376(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    nn = 300; t = {}; k = 1; While[lim = nn^(1/k); lim > 2,  t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k]; t = Union[t] (* T. D. Noe, Apr 05 2012 *)
  • PARI
    {a(n)= local(m, c, k, p); if(n<=1, 2*(n==1), n--; c=0; m=2; while( cMichael Somos, Apr 15 2005; edited by Michel Marcus, Aug 07 2021
    
  • PARI
    lst(lim)=my(v=primes(primepi(lim)),t); forprime(p=2,sqrt(lim),t=p; while((t=t^2)<=lim,v=concat(v,t))); vecsort(v) \\ Charles R Greathouse IV, Apr 10 2012
    
  • PARI
    is_A050376(n)=2^#binary(n=isprimepower(n))==n*2 \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    ispow2(n)=n && n>>valuation(n,2)==1
    is(n)=ispow2(isprimepower(n)) \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    isok(n)={my(e=isprimepower(n)); e && !bitand(e,e-1)} \\ Andrew Howroyd, Oct 16 2024
    
  • Python
    from sympy import isprime, perfect_power
    def ok(n):
      if isprime(n): return True
      answer = perfect_power(n)
      if not answer: return False
      b, e = answer
      if not isprime(b): return False
      while e%2 == 0: e //= 2
      return e == 1
    def aupto(limit):
      alst, m = [], 1
      for m in range(1, limit+1):
        if ok(m): alst.append(m)
      return alst
    print(aupto(241)) # Michael S. Branicky, Feb 03 2021
    
  • Python
    from sympy import primepi, integer_nthroot
    def A050376(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025
  • Scheme
    (define A050376 (MATCHING-POS 1 1 (lambda (n) (= 1 (A064547 n)))))
    ;; Requires also my IntSeq-library. - Antti Karttunen, Feb 09 2016
    

Formula

From Vladimir Shevelev, Mar 16 2012: (Start)
Product_{i>=1} a(i)^k_i = n!, where k_i = floor(n/a(i)) - floor(n/a(i)^2) + floor(n/a(i)^3) - floor(n/a(i)^4) + ...
Denote by A(x) the number of terms not exceeding x.
Then A(x) = pi(x) + pi(x^(1/2)) + pi(x^(1/4)) + pi(x^(1/8)) + ...
Conversely, pi(x) = A(x) - A(sqrt(x)). For example, pi(37) = A(37) - A(6) = 16-4 = 12. (End)
A209229(A100995(a(n))) = 1. - Reinhard Zumkeller, Mar 19 2013
From Vladimir Shevelev, Aug 31 2013: (Start)
A Fermi-Dirac analog of Euler product: Zeta(s) = Product_{k>=1} (1+a(k)^(-s)), for s > 1.
In particular, Product_{k>=1} (1+a(k)^(-2)) = Pi^2/6. (End)
a(n) = A268385(A268392(n)). [By their definitions.] - Antti Karttunen, Feb 10 2016
A000040 union A001248 union A030514 union A179645 union A030635 union .... - R. J. Mathar, May 26 2017

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
More examples from Daniel Forgues, Feb 09 2011

A026424 Number of prime divisors (counted with multiplicity) is odd; Liouville function lambda(n) (A008836) is negative.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 30, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112
Offset: 1

Views

Author

Keywords

Comments

Neither this sequence nor its complement (A028260) contains any infinite arithmetic progression. - Franklin T. Adams-Watters, Sep 05 2008
A066829(a(n)) = 1. - Reinhard Zumkeller, Jun 26 2009
These numbers can be generated by the sieving process described in A066829. - Reinhard Zumkeller, Jul 01 2009
Lexicographically earliest sequence of distinct nonnegative integers with no term being the product of any two not necessarily distinct terms. The equivalent sequence for addition/subtraction is A005408 (the odd numbers), for exponentiation is A259444, and for binary exclusive OR is A000069. - Peter Munn, Mar 16 2018
The equivalent lexicographically earliest sequence with no term being the product of any two distinct terms is A026416. A000028 is similarly the equivalent sequence when A059897 is used as multiplicative operator in place of standard integer multiplication. - Peter Munn, Mar 16 2019

Crossrefs

Cf. A008836, A028260 (complement).
Apart from initial term, same as A026422.
Cf. A026416 and cross-references therein.

Programs

  • Haskell
    a026424 n = a026424_list !! (n-1)
    a026424_list = filter (odd . a001222) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    isA026424 := proc(n)
        if type(numtheory[bigomega](n) ,'odd') then
            true;
        else
            false;
        end if;
    end proc:
    A026424 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA026424(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    Select[Range[2, 112], OddQ[Total[FactorInteger[#]][[2]]] &] (* T. D. Noe, May 07 2011 *)
    (* From version 7 on *) Select[Range[2, 112], LiouvilleLambda[#] == -1 &] (* Jean-François Alcover, Aug 19 2013 *)
    Select[Range[150],OddQ[PrimeOmega[#]]&] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    is(n)=bigomega(n)%2 \\ Charles R Greathouse IV, Sep 16 2015
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A026424(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+1+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Apr 10 2025

Formula

Sum 1/a(n)^m = (zeta(m)^2-zeta(2m))/(2*zeta(m)), Dirichlet g.f. of A066829. - Ramanujan.
n>=2 is in sequence if n is not the product of two smaller elements. - David W. Wilson, May 06 2005
A001222(a(n)) mod 2 = 1. - Reinhard Zumkeller, Oct 05 2011
Union of A000040, A014612, A014614, A046308 etc. - R. J. Mathar, Jul 09 2012

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A064547 Sum of binary digits (or count of 1-bits) in the exponents of the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Wouter Meeussen, Oct 09 2001

Keywords

Comments

This sequence is different from A058061 for n containing 6th, 8th, ..., k-th powers in its prime decomposition, where k runs through the integers missing from A064548.
For n > 1, n is a product of a(n) distinct members of A050376. - Matthew Vandermast, Jul 13 2004
For n > 1: a(n) = length of n-th row in A213925. - Reinhard Zumkeller, Mar 20 2013
Number of Fermi-Dirac factors of n. - Peter Munn, Dec 27 2019

Examples

			For n = 54, n = 2^1 * 3^3 with exponents (1) and (11) in binary, so a(54) = A000120(1) + A000120(3) = 1 + 2 = 3.
		

Crossrefs

Cf. A000028 (positions of odd terms), A000379 (of even terms).
Cf. A050376 (positions of ones), A268388 (terms larger than ones).
Row lengths of A213925.
A000120, A007814, A028234, A037445, A052331, A064989, A067029, A156552, A223491, A286574 are used in formulas defining this sequence.
Cf. A005117, A058061 (to which A064548 relates), A138302.
Cf. other sequences counting factors of n: A001221, A001222.
Cf. other sequences where a(n) depends only on the prime signature of n: A181819, A267116, A268387.
A003961, A007913, A008833, A059895, A059896, A059897, A225546 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a064547 1 = 0
    a064547 n = length $ a213925_row n  -- Reinhard Zumkeller, Mar 20 2013
    
  • Maple
    expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end;
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # N. J. A. Sloane, Dec 20 2007
    # alternative Maple program:
    A064547:= proc(n) local F;
    F:= ifactors(n)[2];
    add(convert(convert(f[2],base,2),`+`),f=F)
    end proc:
    map(A064547,[$1..100]); # Robert Israel, May 17 2016
  • Mathematica
    Table[Plus@@(DigitCount[Last/@FactorInteger[k], 2, 1]), {k, 105}]
  • PARI
    a(n) = {my(f = factor(n)[,2]); sum(k=1, #f, hammingweight(f[k]));} \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    ;; uses memoizing-macro definec
    (definec (A064547 n) (cond ((= 1 n) 0) (else (+ (A000120 (A067029 n)) (A064547 (A028234 n))))))
    ;; Antti Karttunen, Feb 09 2016
    
  • Scheme
    ;; uses memoizing-macro definec
    (definec (A064547 n) (if (= 1 n) 0 (+ (A000120 (A007814 n)) (A064547 (A064989 n)))))
    ;; Antti Karttunen, Feb 09 2016
    

Formula

a(m*n) <= a(m)*a(n). - Reinhard Zumkeller, Mar 20 2013
From Antti Karttunen, Feb 09 2016: (Start)
a(1) = 0, and for n > 1, a(n) = A000120(A067029(n)) + a(A028234(n)).
a(1) = 0, and for n > 1, a(n) = A000120(A007814(n)) + a(A064989(n)).
(End)
a(n) = log_2(A037445(n)). - Vladimir Shevelev, May 13 2016
a(n) = A286574(A156552(n)). - Antti Karttunen, May 28 2017
Additive with a(p^e) = A000120(e). - Jianing Song, Jul 28 2018
a(n) = A000120(A052331(n)). - Peter Munn, Aug 26 2019
From Peter Munn, Dec 18 2019: (Start)
a(A000379(n)) mod 2 = 0.
a(A000028(n)) mod 2 = 1.
A001221(n) <= a(n) <= A001222(n).
A001221(n) < a(n) => a(n) < A001222(n).
a(n) = A001222(n) if and only if n is in A005117.
a(n) = A001221(n) if and only if n is in A138302.
a(n^2) = a(n).
a(A003961(n)) = a(n).
a(A225546(n)) = a(n).
a(n) = a(A007913(n)) + a(A008833(n)).
a(A050376(n)) = 1.
a(A059897(n,k)) + 2 * a(A059895(n,k)) = a(n) + a(k).
a(A059896(n,k)) + a(A059895(n,k)) = a(n) + a(k).
Alternative definition: a(1) = 0; a(n * m) = a(n) + 1 for m = A050376(k) > A223491(n).
(End)
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.13605447049622836522... (A382294), where f(x) = -x + Sum_{k>=0} x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 28 2023
a(n) << log n/log log n. - Charles R Greathouse IV, Nov 29 2024
Showing 1-10 of 31 results. Next