cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A302773 Numerators of (3*n + 2)/12.

Original entry on oeis.org

1, 5, 2, 11, 7, 17, 5, 23, 13, 29, 8, 35, 19, 41, 11, 47, 25, 53, 14, 59, 31, 65, 17, 71, 37, 77, 20, 83, 43, 89, 23, 95, 49, 101, 26, 107, 55, 113, 29, 119, 61, 125, 32, 131, 67, 137, 35, 143, 73, 149, 38, 155, 79, 161, 41, 167, 85, 173, 44, 179, 91, 185, 47, 191, 97
Offset: 0

Views

Author

Bruno Berselli, Apr 13 2018

Keywords

Comments

Or numerators of (3*n+2)/4. - Altug Alkan, Apr 17 2018

Crossrefs

Cf. A060819: numerators of n/4, with n > 0.
Cf. A176672: numerators of (3*n + 1)/12.
First bisection is A165355; second bisection is A016969.

Programs

  • GAP
    List([0..70], n -> NumeratorRat((3*n+2)/12));
    
  • Magma
    [Numerator((3*n+2)/12): n in [0..70]];
  • Mathematica
    Table[Numerator[(3 n + 2)/12], {n, 0, 70}]
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{1,5,2,11,7,17,5,23},80] (* Harvey P. Dale, Feb 04 2021 *)
  • PARI
    vector(70, n, n--; numerator((3*n+2)/12))
    
  • PARI
    Vec((1 + 5*x + 2*x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Apr 16 2018
    
  • Sage
    [numerator((3*n+2)/12) for n in (0..70)]
    

Formula

G.f.: (1 + 5*x + 2*x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8).
a(n) = (3*n + 2)*(((-1)^n + 1)*(i^(n*(n+1)) - 5) + 16)/16, where i = sqrt(-1).
a(n) = A016789(n)/A109008(n+2).

A133186 Period 4: repeat [1, 2, 1, -4].

Original entry on oeis.org

1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4, 1, 2, 1, -4
Offset: 0

Views

Author

Paul Curtz, Oct 07 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1+x)+3x/(1+x^2). a(n) = (-1)^n+3*A056594(n-1). [R. J. Mathar, Oct 30 2008]
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) + a(n-1) + a(n-2) + a(n-3) = 0 for n>2, a(n) = a(n-4) for n>3.
a(n) = cos(n*Pi) + 3*sin(n*Pi/2). (End)
Previous Showing 11-12 of 12 results.