A289540
Coefficients in expansion of 1/E_6^(1/12).
Original entry on oeis.org
1, 42, 12852, 4780104, 1974512526, 863778376440, 391960077239304, 182430901827757632, 86505196617272556900, 41607881477457256661154, 20239469012268054187498440, 9935363620927698868439915544, 4914082482014906612773260362232
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12),
A289567 (k=-6), this sequence (k=-1),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 26 2017 *)
A377223
Coefficients of the series whose 12th power is 1/x * series_reversion(x*E_6(x)), where E_6(x) is the Eisenstein series of weight 6.
Original entry on oeis.org
1, 42, 34020, 39770808, 54603156174, 82058923220904, 130685055490645992, 216707827984305135744, 370213729923354622242084, 647073665508052293475274898, 1151627718366568095339000345192, 2079918757332503030219456972007720, 3802403760868562402170776739039126584, 7022808067106759130277006634854345528104
Offset: 0
- Peter Bala, Fractional iteration of a series inversion operator
- N. Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
-
with(numtheory):
Order := 30:
E_6 := 1 - 504*add(sigma[5](n)*x^n, n = 1..30):
solve(series(x*E_6, x) = y, x):
seq(coeftayl(series((%/y)^(1/12), y), y = 0, n), n = 0..20);
A299503
a(n) = (1/12) * Sum_{d|n} d * A288851(d).
Original entry on oeis.org
42, 23940, 12795048, 6852216840, 3669291602172, 1964875343509008, 1052174343447263568, 563430581238674063376, 301712374716950167413282, 161564459029576395778765080, 86516419639708839110100858360, 46328820782943003562067180265504
Offset: 1
A341801
Coefficients of the series whose 12th power equals E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973.
Original entry on oeis.org
1, -24, -13932, -3585216, -1580941068, -628142318640, -281617154080704, -126114490533924480, -58596395743623957084, -27537281150571923942424, -13153668428658997172513880, -6345860505664230715931502912, -3091029995619009106117946403456
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)*E(4,x)*E(6,x))^(1/12), x, 20):
seriestolist(%);
A377222
Expansion of (1/x) * series_reversion(x*E_6(x)), where E_6(x) is the Eisenstein series of weight 6.
Original entry on oeis.org
1, 504, 524664, 682155936, 993260754360, 1549502199011088, 2532317522698504800, 4279562991330657500736, 7417781163248322999957048, 13114370611008351235424557656, 23557650424885130928376974026832, 42873898555113763448790865162056672, 78885999686148803144416784491001491680
Offset: 0
The 12th root of the g.f. A(x)^(1/12) = (1 + 504*x + 524664*x^2 + 682155936*x^3 + 993260754360*x^4 + 1549502199011088*x^5 + 2532317522698504800*x^6 + ...)^(1/12) = 1 + 42*x + 34020*x^2 + 39770808*x^3 + 54603156174*x^4 + 82058923220904*x^5 + 130685055490645992*x^6 + ... lies in Z[[x]].
-
with(numtheory):
Order := 30:
E_6 := 1 - 504*add(sigma[5](n)*x^n, n = 1..30):
solve(series(x*E_6, x) = y, x):
seq(coeftayl(series((%/y), y), y = 0, n), n = 0..20);
Comments