cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A123926 Greatest common divisor of sigma_k(n) for all k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 6, 4, 2, 2, 2, 1, 2, 4, 2, 2, 4, 2, 3, 4, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 6, 2, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 12, 2, 2, 2, 1, 4, 4, 2, 6, 4, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 6, 4, 2, 4, 6, 2, 3, 2, 1, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Keywords

Comments

Has the property that if gcd(n,m) = 1, then a(n)*a(m) divides a(n*m). First inequality is a(4) = 1, a(5) = 2, but a(20) = 6. It appears that a(n) also always divides sigma_0(n) = tau(n).
Contribution from Matthew Vandermast, Feb 10 2010: (Start)
1. If an integer m does not divide sigma_0(n), m will also not divide sigma_(totient m)(n). Therefore a(n) always divides sigma_0(n) = tau(n).
2. a(n) is even iff sigma_1(n) is even. Cf. A028982, A028983.
3. a(p)=2 for any odd prime p. If n is an odd integer with 2^e divisors, then a(n)=2^e.
4. For any prime p and positive integer m, if p is congruent to 1 mod m, then a(p^(m-1))=m. It follows from Dirichlet's Theorem (see link) that every positive integer appears in the sequence infinitely often. (End)

Examples

			For n=4, sigma_1(n) = 7, sigma_2(n) = 21, both divisible by 7, but sigma_3(n) = 73, which is not, so a(4) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] :=  GCD @@ Table[DivisorSigma[k, n] , {k, 0, EulerPhi[n]}]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 21 2012 *)
  • PARI
    a(n)=my(d=divisors(n), g=#d); for(k=1, eulerphi(n), g=gcd(lift(sum(i=1,#d,Mod(d[i],g)^k)),g); if(g<3,return(g))); g \\ Charles R Greathouse IV, Jun 17 2013

A319278 Square array sigma_k(n) read down antidiagonals: sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 21, 6, 1, 33, 82, 73, 26, 12, 1, 65, 244, 273, 126, 50, 8, 1, 129, 730, 1057, 626, 252, 50, 15, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12
Offset: 1

Views

Author

R. J. Mathar, Sep 16 2018

Keywords

Comments

Equals the square array A082771 without its first column.

Examples

			The array starts in row n=1 with columns k>=1 as:
     1      1      1      1      1      1       1        1
     3      5      9     17     33     65     129      257
     4     10     28     82    244    730    2188     6562
     7     21     73    273   1057   4161   16513    65793
     6     26    126    626   3126  15626   78126   390626
    12     50    252   1394   8052  47450  282252  1686434
     8     50    344   2402  16808 117650  823544  5764802
    15     85    585   4369  33825 266305 2113665 16843009
		

Crossrefs

Cf. A082771, A023887 (diagonal), A109974, A319194 (partial column sums).

Programs

  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)

Formula

sigma_k(n) = sum_{d|n} d^k.

A322104 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d*sigma_k(d).

Original entry on oeis.org

1, 1, 5, 1, 7, 7, 1, 11, 13, 17, 1, 19, 31, 35, 11, 1, 35, 85, 95, 31, 35, 1, 67, 247, 311, 131, 91, 15, 1, 131, 733, 1127, 631, 341, 57, 49, 1, 259, 2191, 4295, 3131, 1615, 351, 155, 34, 1, 515, 6565, 16775, 15631, 8645, 2409, 775, 130, 55, 1, 1027, 19687, 66311, 78131, 49111, 16815, 4991, 850, 217, 23
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,     1,      1,  ...
   5,   7,   11,    19,    35,     67,  ...
   7,  13,   31,    85,   247,    733,  ...
  17,  35,   95,   311,  1127,   4295,  ...
  11,  31,  131,   631,  3131,  15631,  ...
  35,  91,  341,  1615,  8645,  49111,  ...
		

Crossrefs

Columns k=0..3 give A060640, A001001, A027847, A027848.
Cf. A109974, A320940 (diagonal), A321876, A322103.

Programs

  • Mathematica
    Table[Function[k, Sum[d DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, d^(k+1)*sigma(n/d))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j*sigma_k(j)*x^j/(1 - x^j).
L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^sigma_k(j)).
A(n,k) = Sum_{d|n} d^(k+1)*sigma_1(n/d).

A322263 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = numerator of Sum_{d|n} 1/d^k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 2, 2, 1, 65, 244, 273, 126, 25, 8, 4, 1, 129, 730, 1057, 626, 7, 50, 15, 3, 1, 257, 2188, 4161, 3126, 697, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 671, 2402, 585, 91, 9, 2, 1, 1025, 19684, 65793, 78126, 23725, 16808, 4369, 757, 13, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,    1,      1,        1,        1,          1,  ...
  2,  3/2,    5/4,      9/8,    17/16,      33/32,  ...
  2,  4/3,   10/9,    28/27,    82/81,    244/243,  ...
  3,  7/4,  21/16,    73/64,  273/256,  1057/1024,  ...
  2,  6/5,  26/25,  126/125,  626/625,  3126/3125,  ...
  4,    2,  25/18,      7/6,  697/648,    671/648,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Numerator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = numerator of sigma_k(n)/n^k.

A322264 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{d|n} 1/d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 1, 1, 1, 64, 243, 256, 125, 18, 7, 1, 1, 128, 729, 1024, 625, 6, 49, 8, 1, 1, 256, 2187, 4096, 3125, 648, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 648, 2401, 512, 81, 5, 1, 1, 1024, 19683, 65536, 78125, 23328, 16807, 4096, 729, 10, 11, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,    1,      1,        1,        1,          1,  ...
  2,  3/2,    5/4,      9/8,    17/16,      33/32,  ...
  2,  4/3,   10/9,    28/27,    82/81,    244/243,  ...
  3,  7/4,  21/16,    73/64,  273/256,  1057/1024,  ...
  2,  6/5,  26/25,  126/125,  626/625,  3126/3125,  ...
  4,    2,  25/18,      7/6,  697/648,    671/648,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Denominator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = denominator of sigma_k(n)/n^k.

A377331 a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k,n).

Original entry on oeis.org

1, 7, 58, 707, 11186, 219202, 5097205, 137036819, 4179577045, 142539843882, 5374034016858, 221930535785918, 9962431381720780, 482997720973917947, 25151350530268841003, 1400042027334939211235, 82960609980815501293708, 5213812927633674297808237, 346394632975721545946690108
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] * DivisorSigma[n, k], {k, 1, n}], {n, 1, 20}]
  • PARI
    {a(n)=sum(k=1, n, binomial(n, k)*sigma(k, n))}

Formula

a(n) ~ n^n / (sqrt(1 + LambertW(exp(-1))) * exp(n) * LambertW(exp(-1))^n).

A381708 a(n) is the smallest nonnegative integer k such that sigma_k(n) > sigma_k(j) for all 1 <= j < n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 0, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 3, 0, 4, 3, 3, 2, 4, 1, 4, 2, 4, 2, 4, 0, 4, 3, 4, 2, 4, 1, 4, 2, 4, 2, 4, 0, 4, 3, 4, 2, 4, 2, 4, 2, 4, 3, 4, 0, 5, 3, 4, 2, 5, 2, 5, 3, 4, 2, 5, 1, 5, 3, 4, 3, 5, 2, 5, 2, 5, 3, 5, 1, 5, 3, 5, 3, 5, 1, 5, 3, 5, 3, 5, 1, 5, 3, 5, 2, 5, 2, 5, 3, 5, 3, 5, 1, 5
Offset: 1

Views

Author

Matthew Conroy, Mar 04 2025

Keywords

Comments

sigma_k(n) is the sum of the k-th powers of the divisors of n.
a(n) exists since one can prove that for k > n*(log 2 + 1/2 log(n-1)), sigma_k sets a record at n.

Examples

			For n = 1, k = 0 is enough so a(1) = 0.
For n = 2, k = 0 works since sigma_0(2) = 2 > 1 = sigma_0(1) so a(2) = 0.
For n = 3, sigma_0(3) = 2 = sigma_0(2), but sigma_1(3) = 1^1+3^1 = 4 > 3 = sigma_1(2) > 1 = sigma_1(1) so a(3) = 1.
For n = 4, sigma_0(4) = 1^0+2^0+4^0 = 3 > 2 = sigma_0(3) = sigma_0(2) > 1 = sigma_0(1) so a(4) = 0.
For n = 5, sigma_0(5) = 2 = sigma_0(2) and sigma_1(5) = 6 < sigma_1(4) = 7 but sigma_2(5) = 26 > sigma_2(4) > sigma_2(3) > sigma_2(2) > sigma_2(1) so a(5) = 2.
		

Crossrefs

Programs

  • PARI
    check(n,k) =  my(m=0);for(i=1,n-1, my(s=sigma(i,k)); if(s>m,m=s)); if(sigma(n,k)>m,return(1),return(0));
    a(n) = my(ii=0); while(!check(n, ii), ii++);  ii;

Formula

a(n) = 0 precisely when n is highly composite number A002182.
a(n) = 1 precisely when n is highly abundant A002093 and not highly composite.
a(n) = 2 precisely when n is in A193988 and is not highly composite and is not highly abundant.
a(n) <= m if n < A098475(m). Empirically, it appears that a(A098475(m)) = m+1. - Pontus von Brömssen, Mar 16 2025
Previous Showing 21-27 of 27 results.