cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A364059 Number of integer partitions of n whose rounded mean is > 1. Partitions with mean >= 3/2.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 9, 11, 18, 26, 35, 49, 70, 89, 123, 164, 212, 278, 366, 460, 597, 762, 957, 1210, 1530, 1891, 2369, 2943, 3621, 4468, 5507, 6703, 8210, 10004, 12115, 14688, 17782, 21365, 25743, 30913, 36965, 44210, 52801, 62753, 74667, 88626, 104874, 124070
Offset: 0

Views

Author

Gus Wiseman, Jul 06 2023

Keywords

Comments

We use the "rounding half to even" rule, see link.

Examples

			The a(0) = 0 through a(8) = 18 partitions:
  .  .  (2)  (3)   (4)   (5)    (6)     (7)     (8)
             (21)  (22)  (32)   (33)    (43)    (44)
                   (31)  (41)   (42)    (52)    (53)
                         (221)  (51)    (61)    (62)
                         (311)  (222)   (322)   (71)
                                (321)   (331)   (332)
                                (411)   (421)   (422)
                                (2211)  (511)   (431)
                                (3111)  (2221)  (521)
                                        (3211)  (611)
                                        (4111)  (2222)
                                                (3221)
                                                (3311)
                                                (4211)
                                                (5111)
                                                (22211)
                                                (32111)
                                                (41111)
		

Crossrefs

Rounding-up gives A000065.
Rounding-down gives A110618, ranks A344291.
For median instead of mean we appear to have A238495.
The complement is counted by A363947, ranks A363948.
A000041 counts integer partitions.
A008284 counts partitions by length, A058398 by mean.
A025065 counts partitions with low mean 1, ranks A363949.
A067538 counts partitions with integer mean, ranks A316413.
A124943 counts partitions by low median, high A124944.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]>1&]],{n,0,30}]

Formula

a(n) = A000041(n) - A363947(n).

A368503 Number of partitions of an n-set into blocks of size <= n/2.

Original entry on oeis.org

1, 0, 1, 1, 10, 26, 166, 652, 3795, 18755, 112124, 648649, 4163743, 27216840, 190168577, 1376119903, 10468226150, 82744297014, 681863474058, 5830425411936, 51720008131148, 474821737584174, 4506628734688128, 44150936144057758, 445956917001833090, 4638564968368158592
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[Sum[x^j/j!, {j, 1, Floor[n/2]}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = n! * [x^n] exp( Sum_{1 <= j <= n/2} x^j / j! ).

A110619 Triangle of number of partitions of n with no part more than n/k; also partitions of n into n/k or fewer parts.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 3, 1, 1, 7, 3, 1, 1, 1, 11, 7, 4, 1, 1, 1, 15, 8, 4, 1, 1, 1, 1, 22, 15, 5, 5, 1, 1, 1, 1, 30, 18, 12, 5, 1, 1, 1, 1, 1, 42, 30, 14, 6, 6, 1, 1, 1, 1, 1, 56, 37, 16, 6, 6, 1, 1, 1, 1, 1, 1, 77, 58, 34, 19, 7, 7, 1, 1, 1, 1, 1, 1, 101, 71, 39, 21, 7, 7, 1, 1, 1, 1, 1, 1, 1, 135, 105
Offset: 1

Views

Author

Henry Bottomley, Aug 01 2005

Keywords

Examples

			Rows start: 1; 2,1; 3,1,1; 5,3,1,1; 7,3,1,1,1; 11,7,4,1,1,1; etc.
T(7,3)=4 since 7 can be partitioned as 1+1+1+1+1+1+1, 2+1+1+1+1+1, 2+2+1+1+1, or 2+2+2+1 and also as 7, 6+1, 5+2, or 4+3.
		

Crossrefs

First column is A000041, second is A110618.

Formula

T(n, k)=A008284(n+floor[n/k], floor[n/k]). T(0, k)=1; T(n, k)=0 for 0A000041(n); T(n, 2)=A110618(n).

A363261 The partial sums of the prime indices of n include half the sum of all prime indices of n.

Original entry on oeis.org

4, 9, 12, 16, 25, 30, 40, 48, 49, 63, 64, 70, 81, 84, 108, 112, 121, 144, 154, 160, 165, 169, 192, 198, 220, 256, 264, 270, 273, 286, 289, 325, 351, 352, 360, 361, 364, 390, 442, 448, 468, 480, 520, 529, 561, 567, 576, 595, 624, 625, 640, 646, 675, 714, 729
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
  63: {2,2,4}
  64: {1,1,1,1,1,1}
  70: {1,3,4}
  81: {2,2,2,2}
  84: {1,1,2,4}
		

Crossrefs

Partitions of this type are counted by A322439.
For parts instead of partial sums we have A344415, counted by A035363.
A025065 counts palindromic partitions, ranked by A265640.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[Accumulate[prix[#]],Total[prix[#]]/2]&]

A368484 Number of compositions (ordered partitions) of n into parts not greater than n/2.

Original entry on oeis.org

1, 0, 1, 1, 5, 8, 24, 44, 108, 208, 464, 912, 1936, 3840, 7936, 15808, 32192, 64256, 129792, 259328, 521472, 1042432, 2091008, 4180992, 8375296, 16748544, 33525760, 67047424, 134156288, 268304384, 536739840, 1073463296, 2147205120, 4294377472, 8589344768
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x - 3 x^2 + 7 x^3 + 3 x^4 - 6 x^5)/((1 - 2 x) (1 - 2 x^2)^2), {x, 0, 34}], x]
    Join[{1}, LinearRecurrence[{2, 4, -8, -4, 8}, {0, 1, 1, 5, 8}, 34]]

Formula

G.f.: (1 - 2*x - 3*x^2 + 7*x^3 + 3*x^4 - 6*x^5) / ((1 - 2*x) * (1 - 2*x^2)^2).
a(n) = [x^n] 1 / (1 - Sum_{1 <= j <= n/2} x^j).

A368501 Number of compositions (ordered partitions) of n into distinct parts not greater than n/2.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 6, 0, 6, 6, 36, 30, 66, 60, 120, 234, 318, 432, 666, 894, 1272, 2226, 2772, 3960, 5496, 7524, 10068, 13776, 22488, 27756, 39162, 51264, 70398, 91386, 124152, 158574, 247554, 301656, 416748, 537690, 730854, 929196, 1248798, 1576014, 2078328, 2956110
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2023

Keywords

Examples

			a(6) = 6 because we have [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2] and [3,2,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n, iquo(n, 2), 0):
    seq(a(n), n=0..45);  # Alois P. Heinz, Dec 28 2023
  • Mathematica
    Table[Sum[Count[IntegerPartitions[n, {k}], _?(And[UnsameQ @@ #, AllTrue[#, # <= n/2 &]] &)] k!, {k, 0, n}], {n, 0, 45}]

Formula

a(n) = Sum_{k=1..floor(n/2)} A072575(n,k) for n>=1. - Alois P. Heinz, Dec 31 2023
Previous Showing 21-26 of 26 results.