cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A298479 Matula-Goebel numbers of rooted trees in which all positive outdegrees are different.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 16, 19, 24, 28, 32, 38, 42, 48, 52, 53, 56, 57, 64, 68, 74, 84, 96, 104, 106, 107, 112, 128, 131, 134, 136, 152, 159, 163, 168, 178, 192, 208, 212, 224, 228, 256, 262, 263, 272, 296, 304, 311, 318, 336, 356, 384, 393, 416, 446, 448, 456
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
7  ((oo))
8  (ooo)
12 (oo(o))
16 (oooo)
19 ((ooo))
24 (ooo(o))
28 (oo(oo))
32 (ooooo)
38 (o(ooo))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
53 ((oooo))
56 (ooo(oo))
57 ((o)(ooo))
64 (oooooo)
68 (oo((oo)))
74 (o(oo(o)))
84 (oo(o)(oo))
96 (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    doQ[n_]:=Or[n===1,UnsameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],doQ]

A317097 Number of rooted trees with n nodes where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 46, 106, 248, 583, 1393, 3343, 8111, 19801, 48719, 120489, 299787, 749258, 1881216, 4741340, 11993672, 30436507, 77471471, 197726053, 505917729, 1297471092, 3334630086, 8587369072, 22155278381, 57259037225, 148222036272, 384272253397
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 9 trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  ((ooo))
  (o((o)))
  (o(oo))
  ((o)(o))
  (oo(o))
  (oooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, v[n+1]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 28 2018

Extensions

Terms a(20) and beyond from Andrew Howroyd, Aug 28 2018

A317098 Number of series-reduced rooted trees with n unlabeled leaves where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 80, 214, 576, 1595, 4448, 12625, 36146, 104662, 305251, 897417, 2654072, 7895394, 23601441, 70871693, 213660535, 646484951, 1962507610, 5975425743, 18243789556, 55841543003, 171320324878, 526738779846, 1622739134873, 5008518981670
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 12 trees:
  (o(o(o(oo))))
  (o(o(ooo)))
  (o((oo)(oo)))
  (o(oo(oo)))
  (o(oooo))
  ((oo)(o(oo)))
  ((oo)(ooo))
  (oo(o(oo)))
  (oo(ooo))
  (o(oo)(oo))
  (ooo(oo))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{1}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

A320271 Number of unlabeled semi-binary rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 17, 26, 46, 72, 124, 196, 329, 525, 871, 1396, 2293, 3689, 6028, 9717, 15817, 25534, 41475, 67009, 108680, 175689, 284698, 460387, 745610, 1205997, 1952478, 3158475, 5112349, 8270824, 13385466, 21656290, 35045445, 56701735, 91753208
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			The a(1) = 1 through a(7) = 17 semi-binary rooted trees:
  o  (o)  (oo)   ((oo))   (o(oo))    ((o(oo)))    ((oo)(oo))
          ((o))  (o(o))   (((oo)))   (o((oo)))    (o(o(oo)))
                 (((o)))  ((o)(o))   (o(o(o)))    (((o(oo))))
                          ((o(o)))   ((((oo))))   ((o((oo))))
                          (o((o)))   (((o)(o)))   ((o(o(o))))
                          ((((o))))  (((o(o))))   (o(((oo))))
                                     ((o((o))))   (o((o)(o)))
                                     (o(((o))))   (o((o(o))))
                                     (((((o)))))  (o(o((o))))
                                                  (((((oo)))))
                                                  ((((o)(o))))
                                                  ((((o(o)))))
                                                  (((o))((o)))
                                                  (((o((o)))))
                                                  ((o(((o)))))
                                                  (o((((o)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

Formula

a(1) = 1,
a(2) = 1,
a(3) = 2,
a(n even) = a(n-1) + a(n-2),
a(n odd) = a(n-1) + a(n-2) + a((n-1)/2).

A343937 Number of unlabeled semi-identity plane trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 38, 117, 375, 1224, 4095, 13925, 48006, 167259, 588189, 2084948, 7442125, 26725125, 96485782, 350002509, 1275061385, 4662936808, 17111964241, 62996437297, 232589316700, 861028450579, 3195272504259, 11884475937910, 44295733523881, 165420418500155
Offset: 1

Views

Author

Gus Wiseman, May 07 2021

Keywords

Comments

In a semi-identity tree, only the non-leaf branches of any given vertex are required to be distinct. Alternatively, a rooted tree is a semi-identity tree iff the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(5) = 13 trees are the following. The number of nodes is the number of o's plus the number of brackets (...).
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (o(o))   ((ooo))
                 (((o)))  (o(o)o)
                          (o(oo))
                          (oo(o))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o(o)))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The not necessarily semi-identity version is A000108.
The non-plane binary version is A063895, ranked by A339193.
The non-plane version is A306200, ranked by A306202.
The binary case is A343663.
A000081 counts unlabeled rooted trees with n nodes.
A001190*2 - 1 counts binary trees, ranked by A111299.
A001190 counts semi-binary trees, ranked by A292050.
A004111 counts identity trees, ranked by A276625.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Mathematica
    arsiq[n_]:=Join@@Table[Select[Union[Tuples[arsiq/@ptn]],#=={}||(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
    Table[Length[arsiq[n]],{n,10}]
  • PARI
    F(p)={my(n=serprec(p,x)-1, q=exp(x*y + O(x*x^n))*prod(k=2, n, (1 + y*x^k + O(x*x^n))^polcoef(p,k,x)) ); sum(k=0, n, k!*polcoef(q,k,y))}
    seq(n)={my(p=O(x)); for(n=1, n, p=x*F(p)); Vec(p)} \\ Andrew Howroyd, May 08 2021

Formula

G.f.: A(x) satisfies A(x) = x*Sum_{j>=0} j!*[y^j] exp(x*y - Sum_{k>=1} (-y)^k*(A(x^k) - x^k)/k). - Andrew Howroyd, May 08 2021

Extensions

Terms a(17) and beyond from Andrew Howroyd, May 08 2021

A298540 Matula-Goebel numbers of rooted trees such that every branch of the root has a different number of nodes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
6  (o(o))
7  ((oo))
10 (o((o)))
11 ((((o))))
13 ((o(o)))
14 (o(oo))
15 ((o)((o)))
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
22 (o(((o))))
23 (((o)(o)))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],UnsameQ@@MGweight/@primeMS[#]&]

A352456 Smallest Matula-Goebel number of a rooted binary tree (everywhere 0 or 2 children) of n childless vertices.

Original entry on oeis.org

1, 4, 14, 49, 301, 1589, 9761, 51529, 452411, 3041573, 23140153, 143573641, 1260538619, 8474639717, 64474684537
Offset: 1

Views

Author

Kevin Ryde, Mar 16 2022

Keywords

Comments

In the formula below, the two subtrees of the root have x and y childless vertices. The minimum Matula-Goebel number for that partition uses the minimum numbers for each subtree. The question is then which x+y partition is the overall minimum.

Examples

			For n = 6, the tree a(6) = 1589 is
.
        *   root
     /    \
    *      *       6 childless
   / \    / \      vertices "@"
  @  @   *   *
        / \ / \
        @ @ @ @
.
		

References

  • Audace A. V. Dossou-Olory. The topological trees with extreme Matula numbers. J. Combin. Math. Combin. Comput., 115 (2020), 215-225.

Crossrefs

Column 1 of A245824.
Cf. A111299 (all binary trees), A005517 (smallest all trees), A000040 (primes).

Programs

  • PARI
    \\ See links.
    
  • Python
    from sympy import prime
    from itertools import count, islice
    def agen(): # generator of terms
        alst, plst = [0, 1], [0, 2]
        yield 1
        for n in count(2):
            an = min(plst[x]*plst[n-x] for x in range(1, n//2+1))
            yield an
            alst.append(an)
            plst.append(prime(an))
    print(list(islice(agen(), 10))) # Michael S. Branicky, Mar 17 2022

Formula

a(n) = Min_{x+y=n} prime(a(x))*prime(a(y)).

Extensions

a(14) from Michael S. Branicky, Mar 17 2022
a(15) from Andrew Howroyd, Sep 17 2023

A356121 Matula-Goebel number of the rooted binary tree with Colijn-Plazzotta number n.

Original entry on oeis.org

1, 4, 14, 49, 86, 301, 1849, 454, 1589, 9761, 51529, 886, 3101, 19049, 100561, 196249, 3986, 13951, 85699, 452411, 882899, 3972049, 31754, 111139, 682711, 3604079, 7033511, 31642861, 252079129, 6418, 22463, 137987, 728443, 1421587, 6395537, 50949293, 10297681
Offset: 1

Views

Author

Kevin Ryde, Jul 31 2022

Keywords

Comments

A permutation of A111299.

Crossrefs

Programs

  • PARI
    \\ See links.

Formula

a(n) = prime(a(x)) * prime(a(y)) for n>=2, where subtrees x = A002024(n-1) and y = A002260(n-1).

A298363 Matula-Goebel numbers of rooted identity trees with thinning limbs.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 15, 22, 26, 30, 31, 33, 39, 55, 58, 62, 65, 66, 78, 87, 93, 94, 110, 127, 130, 141, 143, 145, 155, 158, 165, 174, 186, 195, 202, 235, 237, 254, 274, 282, 286, 290, 303, 310, 319, 330, 334, 341, 377, 381, 390, 395, 403, 411, 429, 435, 465
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2018

Keywords

Comments

An unlabeled rooted tree has thinning limbs if its outdegrees are weakly decreasing from root to leaves.

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
6  (o(o))
10 (o((o)))
11 ((((o))))
15 ((o)((o)))
22 (o(((o))))
26 (o(o(o)))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
39 ((o)(o(o)))
55 (((o))(((o))))
58 (o(o((o))))
62 (o((((o)))))
65 (((o))(o(o)))
66 (o(o)(((o))))
78 (o(o)(o(o)))
87 ((o)(o((o))))
93 ((o)((((o)))))
94 (o((o)((o))))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    idthinQ[t_]:=And@@Cases[t,b_List:>UnsameQ@@b&&Length[b]>=Max@@Length/@b,{0,Infinity}];
    Select[Range[500],idthinQ[MGtree[#]]&]

Formula

Intersection of A276625 and A298303.

A317720 Numbers that are not uniform relatively prime tree numbers.

Original entry on oeis.org

9, 12, 18, 20, 21, 23, 24, 25, 27, 28, 37, 39, 40, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 60, 61, 63, 65, 68, 69, 71, 72, 73, 74, 75, 76, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 107, 108, 111, 112, 115, 116, 117, 120, 121, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
   9: ((o)(o))
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  23: (((o)(o)))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  37: ((oo(o)))
  39: ((o)(o(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],!rupQ[#]&]
Previous Showing 31-40 of 40 results.