cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A277552 Primes q with prime gap q - p of n-th record merit.

Original entry on oeis.org

3, 5, 11, 127, 1151, 1361, 19661, 31469, 156007, 360749, 370373, 1357333, 2010881, 17051887, 20831533, 191913031, 436273291, 2300942869, 3842611109, 4302407713, 10726905041, 25056082543, 304599509051, 461690510543, 1346294311331, 1408695494197, 1968188557063, 2614941711251, 13829048560417, 19581334193189
Offset: 1

Views

Author

Bobby Jacobs, Nov 07 2016

Keywords

Comments

The merit of the gap between consecutive primes p and q is (q-p)/log(p).
This sequence is infinite (Westzynthius 1931). - Charles R Greathouse IV, Nov 10 2016

Crossrefs

Programs

  • Mathematica
    p = 2; q = 3; lmt = 0; lst = {}; While[p < 10^12, If[q > p + lmt*Log[p], AppendTo[lst, q]; Print[q]; lmt = (q - p)/Log[p]]; p = q; q = NextPrime@ p]; lst (* or *)
    (* set lst = the terms in A111870 *) NextPrime[ lst] (* Robert G. Wilson v, Nov 07 2016 *)
  • PARI
    r=rm=0; p=2; forprime(q=3,, t=q-p; if(t>r, r=t; t/=log(p); if(t>rm, rm=t; print1(q", "))); p=q) \\ Charles R Greathouse IV, Nov 11 2016

Formula

a(n) = A111870(n) + A111871(n). - Charles R Greathouse IV, Nov 11 2016

Extensions

More terms from Robert G. Wilson v, Nov 07 2016

A114417 Records in 7-almost prime gaps, ordered by merit.

Original entry on oeis.org

64, 96, 112, 168, 210, 280
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114407 and A046308:
n A114407(n) A114407(n)/log(A046308(n))
1 64 64/log 128 = 30.371914
2 96 96/log 192 = 42.0443868
3 32 32/log 288 = 13.0113433
4 112 112/log 320 = 44.7079021
5 16 16/log 432 = 6.07099172
6 32 32/log 448 = 12.0696509
7 168 168/log 480 = 62.6575474
8 24 24/log 648 = 8.53614076
		

Crossrefs

Formula

a(n) = Records in A114417(n)/log(A046308(n)) = Records in (A046308(n+1) - A046308(n))/log(A046308(n)).

Extensions

a(5)-a(6) from Donovan Johnson, Feb 17 2010

A114418 Records in 8-almost prime gaps ordered by merit.

Original entry on oeis.org

128, 192, 224, 336, 420, 560
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			Records defined in terms of A114408 and A046310:
n A114418(n) A114418(n)/log(A046310(n)).
1 128 128/log 256 = 53.1508495
2 192 192/log 384 = 74.2938824
3 64 64/log 576 = 23.1848568
4 224 224/log 640 = 79.8238182
5 32 32/log 864 = 10.8972758
6 64 64/log 896 = 21.6779549
7 336 336/log 960 = 112.665809
8 48 48/log 1296 = 15.4211665
22 420 420/log 2496 = 123.629603
		

Crossrefs

Formula

a(n) = records in A114418(n)/log(A046310(n)) = records in (A046310(n+1) - A046310(n))/log(A046310(n)).

Extensions

Offset corrected and a(6) from Donovan Johnson, Feb 17 2010

A228775 a(n) is the maximal k>=1 such that nextprime(j*n)<=(j+1)*n, j=1,...,k.

Original entry on oeis.org

2, 3, 7, 5, 17, 14, 16, 24, 12, 19, 28, 43, 86, 80, 34, 82, 78, 73, 69, 66, 117, 329, 57, 222, 171, 228, 178, 470, 291, 359, 505, 366, 585, 576, 644, 544, 423, 742, 502, 636, 765, 466, 936, 578, 697, 682, 541, 1442, 640, 627, 615, 603, 2025, 1660, 570, 1833
Offset: 1

Views

Author

Vladimir Shevelev, Sep 04 2013

Keywords

Examples

			If n=3, then, for j=1, nextprime(3)<=6; for j=2, nextprime(6)<=9; for j=3,nextprime(9)<=12; for j=4, nextprime(12)<=15; for j=5, nextprime(15)<=18; for j=6,nextprime(18)<=21; for j=7, nextprime(21)<=24, BUT for j=8, nextprime(24)>27. Thus a(3)=7.
		

Crossrefs

Main sequence is A110835.

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[NextPrime[k*n] <= (k+1)*n && NextPrime[(k+1)*n] > (k+2)*n, Return[k]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 05 2013 *)

Formula

Conjectural inequality: for n>=2, a(n) <= log^2(n*a(n)). This essentially corresponds to Cramer's conjecture for prime gaps.

Extensions

More terms from Peter J. C. Moses

A114413 Records in 3-almost prime gaps ordered by merit.

Original entry on oeis.org

4, 6, 12, 58, 83
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114403 and A014612:
  n  A114403(n)  A114403(n)/log_10(A014612(n))
  =  ==========  =============================
  1      4       4/log_10(8)   = 4.42923746
  2      6       6/log_10(12)  = 5.55977045
  3      2       2/log_10(18)  = 1.59327954
  4      7       7/log_10(20)  = 5.38035251
  5      1       1/log_10(27)  = 0.698634425
  6      2       2/log_10(28)  = 1.38201907
  7      12      12/log_10(30) = 8.12390991
  ...
  19     14      14/log_10(78) = 7.3992072
		

Crossrefs

Formula

a(n) = records in A114403(n)/log_10(A014612(n)) = records in (A014612(n+1) - A014612(n))/log_10(A014612(n)).

Extensions

a(4)-a(5) from Donovan Johnson, Feb 17 2010

A114416 Records in 6-almost prime gaps ordered by merit.

Original entry on oeis.org

32, 48, 56, 84, 105, 140
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114406 and A046306:
n A114406(n) A114406(n)/log(A046306(n)).
1 32 32/log 64 = 17.7169498
2 48 48/log 96 = 24.2146479
3 16 16/log 144 = 7.41302726
4 56 56/log 160 = 25.4069653
5 8 8/log 216 = 3.42692589
6 16 16/log 224 = 6.80779215
7 84 84/log 240 = 35.2909853
8 12 12/log 324 = 4.77983862
...
22 105 105/log 624 = 37.5646032
		

Crossrefs

Formula

a(n) = records in A114406(n)/log(A046306(n)) = records in (A046306(n+1) - A046306(n))/log(A046306(n)).

Extensions

a(6) from Donovan Johnson, Feb 17 2010

A316917 Let g(n) be the n-th maximal prime gap; a(n) = 1 if g(n) has record merit, 0 if it does not.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Rodolfo Ruiz-Huidobro, Jul 16 2018

Keywords

Comments

a(n) = 1 if A002386(n) is in A111870, a(n) = 0 if A002386(n) is not in A111870.
The merit M of a prime gap of measure g following the prime p_1 is defined as M=g/ln(p_1). It is the ratio of the measure of the gap to the "average" measure of gaps near that point. As an example, the merit of the sixth maximal gap, of size 14, after prime 113 is 2.96.
a(81) = 0 because there are previous maximal gaps with higher merits. - Rodolfo Ruiz-Huidobro, Jan 23 2024
a(82) = 1 as the merit of the gap is 1572/log(18571673432051830099)=1572/44.37=35.43 (which is a record merit). - Rodolfo Ruiz-Huidobro, May 10 2024
a(83) =1 as the merit for the gap is 1676/log(20733746510561444539) =1676/44.48=37.681 (which is a record merit). - Rodolfo Ruiz-Huidobro, Dec 20 2024

Examples

			The 5th record prime gap from 89 to 97 does not have record merit, so a(5) = 0.
The 10th record prime gap from 1327 to 1361 has record merit, so a(10) = 1.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 10^6, s, t, u, v}, s = Prime@ Range[nn]; t = Differences@ s; u = Map[(#2 - #1)/Log[#1] & @@ # &, Partition[Prime@ Range[nn], 2, 1]]; v = Map[Prime@ FirstPosition[u, #][[1]] &, Union@ FoldList[Max, u]]; Boole[! FreeQ[v, s[[FirstPosition[t, #][[1]] ]] ] ] & /@ Union@ FoldList[Max, t]] (* Michael De Vlieger, Jul 19 2018 *)

Extensions

a(81) from Rodolfo Ruiz-Huidobro, Jan 23 2024
a(82) from Rodolfo Ruiz-Huidobro, May 10 2024
a(83) from Rodolfo Ruiz-Huidobro, Dec 09 2024
Previous Showing 21-27 of 27 results.