A215648
G.f. satisfies: A(x) = 1 + x*A(x)^2 + 3*x^2*A'(x)*A(x).
Original entry on oeis.org
1, 1, 5, 44, 539, 8337, 154632, 3332640, 81711479, 2244563555, 68272834865, 2278102125040, 82749748994500, 3250966816344604, 137371215935579892, 6213234210869600376, 299527133488944917631, 15332761842086151881175, 830648056455231849827895
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 44*x^3 + 539*x^4 + 8337*x^5 + 154632*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 11*x^2 + 98*x^3 + 1191*x^4 + 18192*x^5 + 333264*x^6 +...
A'(x)*A(x) = 1 + 11*x + 147*x^2 + 2382*x^3 + 45480*x^4 + 999792*x^5 +...
where A(x) = 1 + x*A(x)^2 + 3*x^2*A'(x)*A(x).
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(x*A^3)/(A+x*O(x^n)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
Original entry on oeis.org
1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, 30670171248, 1000637672064, 35571839009952, 1368990872569536, 56720594992438848, 2517761078627172864, 119222916630934484352, 5999613754698100628736, 319763269764299852744448, 17994913747767982690289664
Offset: 0
-
n := 1: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
Original entry on oeis.org
1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, 155913036915, 5692874399025, 224034935130075, 9456933847187625, 426402330032719875, 20460268520575152225, 1041301103429870128875, 56040353252589013121625, 3180443637298592493577875, 189863589771186976073108625
Offset: 0
-
n := 2: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
Original entry on oeis.org
1, 3, 42, 786, 17736, 459768, 13333488, 425600976, 14791250688, 555381292800, 22398626084352, 965768866650624, 44347055502428160, 2161455366606034944, 111489317304231616512, 6069676735484389779456, 347921629212782938472448, 20950823605616500202323968, 1322561808699778749456678912
Offset: 0
-
n := 3: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
Original entry on oeis.org
1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, 1595167432599, 70315835952471, 3293268346004439, 163337193581191575, 8554718468806548951, 471976737725208306327, 27369722655919760451159, 1664858070989667129693975, 106029602841882346657155543
Offset: 0
-
n := 4: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
A218168
G.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^4.
Original entry on oeis.org
1, 1, 2, 5, 16, 77, 630, 7956, 132480, 2664389, 62140078, 1643056625, 48503833280, 1580192424580, 56292381309608, 2176251789724500, 90726545080501440, 4056755120695005717, 193649641793538259950, 9828338731644277922679, 528459404673048692682384
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 77*x^5 + 630*x^6 + 7956*x^7 +...
Related expansions:
A'(x) = 1 + 4*x + 15*x^2 + 64*x^3 + 385*x^4 + 3780*x^5 + 55692*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 46*x^4 + 206*x^5 + 1503*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 96*x^4 + 414*x^5 + 2735*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 173*x^4 + 736*x^5 + 4486*x^6 +...
d/dx x*A(x)^3 = 1 + 6*x + 27*x^2 + 112*x^3 + 480*x^4 + 2484*x^5 +...
where A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^4.
1/A(x) = 1 - x - x^2 - 2*x^3 - 7*x^4 - 45*x^5 - 468*x^6 - 6624*x^7 -...
A'(x)/A(x)^2 = 1 + 2*x + 6*x^2 + 28*x^3 + 225*x^4 + 2808*x^5 +...
where A(x) = 1 + x/A(x) + 3*x^2*A'(x)/A(x)^2.
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(x*A^3)/(A+x*O(x^n))^4);polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))