cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A215648 G.f. satisfies: A(x) = 1 + x*A(x)^2 + 3*x^2*A'(x)*A(x).

Original entry on oeis.org

1, 1, 5, 44, 539, 8337, 154632, 3332640, 81711479, 2244563555, 68272834865, 2278102125040, 82749748994500, 3250966816344604, 137371215935579892, 6213234210869600376, 299527133488944917631, 15332761842086151881175, 830648056455231849827895
Offset: 0

Views

Author

Paul D. Hanna, Mar 09 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 44*x^3 + 539*x^4 + 8337*x^5 + 154632*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 11*x^2 + 98*x^3 + 1191*x^4 + 18192*x^5 + 333264*x^6 +...
A'(x)*A(x) = 1 + 11*x + 147*x^2 + 2382*x^3 + 45480*x^4 + 999792*x^5 +...
where A(x) = 1 + x*A(x)^2 + 3*x^2*A'(x)*A(x).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(x*A^3)/(A+x*O(x^n)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x).
a(n) ~ n! * 3^(n+1) / (Pi*exp(1)). - Vaclav Kotesovec, Aug 24 2017
a(0) = 1; a(n) = Sum_{k=0..n-1} (3*k+1) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Sep 05 2024

A355794 Row 1 of A355793.

Original entry on oeis.org

1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, 30670171248, 1000637672064, 35571839009952, 1368990872569536, 56720594992438848, 2517761078627172864, 119222916630934484352, 5999613754698100628736, 319763269764299852744448, 17994913747767982690289664
Offset: 0

Views

Author

Peter Bala, Jul 19 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355795 (row 2), A355796 (row 3), A355797 (row 4).

Programs

  • Maple
    n := 1: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

O.g.f.: A(x) = ( Sum_{k >= 0} t(k+1)/t(1)*x^k )/( Sum_{k >= 0} t(k)/t(0)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
A(x)/(1 - 2*x*A(x)) = Sum_{k >= 0} t(k+1)/t(1)*x^k.
A(x) = 1/(1 + 2*x - 5*x/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 2*x*A(x)^2 - (1 - x)*A(x) + 1 = 0 with A(0) = 1.
Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 5*x/(1 - 6*x/(1 - 8*x/(1 - 9*x/(1 - 11*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.

A355795 Row 2 of A355793.

Original entry on oeis.org

1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, 155913036915, 5692874399025, 224034935130075, 9456933847187625, 426402330032719875, 20460268520575152225, 1041301103429870128875, 56040353252589013121625, 3180443637298592493577875, 189863589771186976073108625
Offset: 0

Views

Author

Peter Bala, Jul 21 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355794 (row 1), A355796 (row 3), A355797 (row 4).

Programs

  • Maple
    n := 2: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

O.g.f.: A(x) = ( Sum_{k >= 0} t(k+2)/t(2)*x^k )/( Sum_{k >= 0} t(k+1)/t(1)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
A(x)/(1 - 5*x*A(x)) = Sum_{k >= 0} t(k+2)/t(2)*x^k.
A(x) = 1/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - 14*x/(1 + 14*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 5*x*A(x)^2 - (1 + 2*x)*A(x) + 1 = 0 with A(0) = 1.
Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 8*x/(1 - 6*x/(1 - 11*x/(1 - 9*x/(1 - 14*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.

A355796 Row 3 of A355793.

Original entry on oeis.org

1, 3, 42, 786, 17736, 459768, 13333488, 425600976, 14791250688, 555381292800, 22398626084352, 965768866650624, 44347055502428160, 2161455366606034944, 111489317304231616512, 6069676735484389779456, 347921629212782938472448, 20950823605616500202323968, 1322561808699778749456678912
Offset: 0

Views

Author

Peter Bala, Jul 21 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355794 (row 1), A355795 (row 2), A355797 (row 4).

Programs

  • Maple
    n := 3: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
O.g.f.: A(x) = ( Sum_{k >= 0} t(k+3)/t(3)*x^k )/( Sum_{k >= 0} t(k+2)/t(2)*x^k ).
A(x)/(1 - 8*x*A(x)) = Sum_{k >= 0} t(k+3)/t(3)*x^k.
A(x) = 1/(1 + 8*x - 11*x/(1 + 11*x - 14*x/(1 + 14*x - 17*x/(1 + 17*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*d/dx(A(x)) + 8*x*R(n,x)^2 - (1 + 5*x)*R(n,x) + 1 = 0 with A(0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 3*x/(1 - 11*x/(1 - 6*x/(1 - 14*x/(1 - 9*x/(1 - 17*x/(1 - 12*x/(1 - ...)))))))), a continued fraction of Stieltjes type.

A355797 Row 4 of A355793.

Original entry on oeis.org

1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, 1595167432599, 70315835952471, 3293268346004439, 163337193581191575, 8554718468806548951, 471976737725208306327, 27369722655919760451159, 1664858070989667129693975, 106029602841882346657155543
Offset: 0

Views

Author

Peter Bala, Jul 21 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355794 (row 1), A355795 (row 2), A355796 (row 3).

Programs

  • Maple
    n := 4: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
O.g.f.: A(x) = ( Sum_{k >= 0} t(k+4)/t(4)*x^k )/( Sum_{k >= 0} t(k+3)/t(3)*x^k ).
A(x)/(1 - 11*x*A(x)) = Sum_{k >= 0} t(k+4)/t(4)*x^k.
A(x) = 1/(1 + 11*x - 14*x/(1 + 14*x -17*x/(1 + 17*x - 20*x/(1 + 20*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*d/dx(A(x)) + 11*x*A(x)^2 - (1 + 8*x)*A(x) + 1 = 0 with A(0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 3*x/(1 - 14*x/(1 - 6*x/(1 - 17*x/(1 - 9*x/(1 - 20*x/(1 - 12*x/(1 - 23*x/(1 - ...))))))))), a continued fraction of Stieltjes type.

A218168 G.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^4.

Original entry on oeis.org

1, 1, 2, 5, 16, 77, 630, 7956, 132480, 2664389, 62140078, 1643056625, 48503833280, 1580192424580, 56292381309608, 2176251789724500, 90726545080501440, 4056755120695005717, 193649641793538259950, 9828338731644277922679, 528459404673048692682384
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 77*x^5 + 630*x^6 + 7956*x^7 +...
Related expansions:
A'(x) = 1 + 4*x + 15*x^2 + 64*x^3 + 385*x^4 + 3780*x^5 + 55692*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 46*x^4 + 206*x^5 + 1503*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 96*x^4 + 414*x^5 + 2735*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 173*x^4 + 736*x^5 + 4486*x^6 +...
d/dx x*A(x)^3 =  1 + 6*x + 27*x^2 + 112*x^3 + 480*x^4 + 2484*x^5 +...
where A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^4.
1/A(x) = 1 - x - x^2 - 2*x^3 - 7*x^4 - 45*x^5 - 468*x^6 - 6624*x^7 -...
A'(x)/A(x)^2 = 1 + 2*x + 6*x^2 + 28*x^3 + 225*x^4 + 2808*x^5 +...
where A(x) = 1 + x/A(x) + 3*x^2*A'(x)/A(x)^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(x*A^3)/(A+x*O(x^n))^4);polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies: A(x)^3 = A(x)^2 + x*A(x) + 3*x^2*A'(x).
a(n) ~ c * 3^n * n! / n^2, where c = 0.0220701841954367321830819129913... - Vaclav Kotesovec, Aug 24 2017
Previous Showing 11-16 of 16 results.